set.seed(1234)
dat <- read.csv("nigata.csv")
colnames(dat) <- c("city", "sosu", "tokuhyo")
data = list(N=nrow(dat), x=round(dat$tokuhyo), n=round(dat$sosu), city=as.character(dat$city))
In data2 (N, n, x), joetsu is removed from data. The original data is now renamed as N_new, n_new, x_new. N, n, x are used for computing posterior distribution. Then predictive distribution is computed for n_new, and posterior probability is computed at x_new.
id2 = (1:data$N)[-2] # 2=joetsu
data2 = list(N=data$N-1, x=data$x[id2], n=data$n[id2], id=id2, city=data$city[id2], N_new=data$N, x_new=data$x, n_new=data$n, city_new=data$city)
plot(data2$n_new, data2$x_new, type="n", xlab="投票総数", ylab="得票数", family=family); text(data2$n_new, data2$x_new, cex=0.5,col="red") ; text(data2$n, data2$x, data2$id, cex=0.5)
library(rstan)
## Loading required package: StanHeaders
## Loading required package: ggplot2
## rstan (Version 2.19.2, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
rstan_options(auto_write=TRUE)
options(mc.cores=parallel::detectCores())
betabinom3 = stan_model("betabinom3.stan")
fit1 <- sampling(betabinom3, data=data2, chains=8, warmup=2000, iter=20000)
fit1
## Inference for Stan model: betabinom3.
## 8 chains, each with iter=20000; warmup=2000; thin=1;
## post-warmup draws per chain=18000, total post-warmup draws=144000.
##
## mean se_mean sd 2.5% 25% 50% 75%
## p[1] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[2] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[3] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[4] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[5] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[6] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[7] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[8] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[9] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[10] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[11] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[12] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[13] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[14] 0.01 0.00 0.00 0.00 0.00 0.01 0.01
## p[15] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[16] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[17] 0.01 0.00 0.00 0.00 0.00 0.01 0.01
## p[18] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[19] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[20] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[21] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[22] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[23] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[24] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[25] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[26] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[27] 0.01 0.00 0.00 0.00 0.01 0.01 0.01
## p[28] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[29] 0.01 0.00 0.00 0.00 0.01 0.01 0.01
## p[30] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[31] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[32] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[33] 0.01 0.00 0.00 0.00 0.00 0.01 0.01
## p[34] 0.01 0.00 0.00 0.00 0.01 0.01 0.01
## p[35] 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## p[36] 0.01 0.00 0.00 0.00 0.01 0.01 0.01
## phi 0.01 0.00 0.00 0.01 0.01 0.01 0.01
## lambda 2975.21 2.77 879.03 1573.74 2347.95 2868.29 3482.28
## alpha 23.58 0.02 7.03 12.42 18.56 22.70 27.61
## beta 2951.63 2.75 872.07 1561.07 2329.48 2845.77 3454.83
## x_rep[1] 934.65 0.54 205.69 572.00 793.00 921.00 1060.00
## x_rep[2] 684.96 0.40 151.32 418.00 581.00 674.00 777.00
## x_rep[3] 597.47 0.35 132.34 364.00 506.00 588.00 678.00
## x_rep[4] 525.36 0.31 116.62 319.00 445.00 517.00 597.00
## x_rep[5] 429.31 0.25 95.68 260.00 363.00 423.00 488.00
## x_rep[6] 348.40 0.21 78.09 211.00 294.00 343.00 396.00
## x_rep[7] 328.85 0.19 73.71 199.00 278.00 324.00 374.00
## x_rep[8] 313.24 0.18 70.44 189.00 265.00 308.00 356.00
## x_rep[9] 285.63 0.17 64.39 172.00 241.00 281.00 325.00
## x_rep[10] 258.42 0.15 58.38 155.00 218.00 254.00 294.00
## x_rep[11] 234.28 0.14 53.22 140.00 197.00 231.00 267.00
## x_rep[12] 223.64 0.13 50.89 134.00 189.00 220.00 255.00
## x_rep[13] 218.83 0.13 49.78 131.00 184.00 215.00 249.00
## x_rep[14] 218.38 0.13 49.76 130.00 184.00 215.00 249.00
## x_rep[15] 214.09 0.13 48.83 128.00 180.00 211.00 244.00
## x_rep[16] 213.71 0.13 48.73 128.00 180.00 210.00 244.00
## x_rep[17] 189.07 0.11 43.34 113.00 159.00 186.00 216.00
## x_rep[18] 180.81 0.11 41.55 107.00 152.00 178.00 206.00
## x_rep[19] 171.81 0.10 39.59 102.00 144.00 169.00 196.00
## x_rep[20] 154.86 0.09 35.95 91.00 130.00 152.00 177.00
## x_rep[21] 151.56 0.09 35.21 90.00 127.00 149.00 173.00
## x_rep[22] 145.21 0.09 33.82 86.00 122.00 143.00 166.00
## x_rep[23] 144.32 0.09 33.61 85.00 121.00 142.00 165.00
## x_rep[24] 138.00 0.08 32.26 81.00 116.00 136.00 158.00
## x_rep[25] 132.42 0.08 31.00 78.00 111.00 130.00 151.00
## x_rep[26] 111.47 0.07 26.40 65.00 93.00 110.00 128.00
## x_rep[27] 99.69 0.06 23.86 58.00 83.00 98.00 114.00
## x_rep[28] 49.76 0.03 12.90 27.00 41.00 49.00 58.00
## x_rep[29] 43.99 0.03 11.63 24.00 36.00 43.00 51.00
## x_rep[30] 43.93 0.03 11.59 24.00 36.00 43.00 51.00
## x_rep[31] 42.88 0.03 11.39 23.00 35.00 42.00 50.00
## x_rep[32] 30.76 0.02 8.67 16.00 25.00 30.00 36.00
## x_rep[33] 29.68 0.02 8.46 15.00 24.00 29.00 35.00
## x_rep[34] 25.93 0.02 7.61 13.00 21.00 25.00 31.00
## x_rep[35] 19.83 0.02 6.19 9.00 15.00 19.00 24.00
## x_rep[36] 18.43 0.02 5.87 8.00 14.00 18.00 22.00
## x_rep[37] 1.79 0.00 1.39 0.00 1.00 2.00 3.00
## lp__ -45408.98 0.02 4.53 -45418.77 -45411.83 -45408.64 -45405.76
## 97.5% n_eff Rhat
## p[1] 0.01 201705 1
## p[2] 0.01 187530 1
## p[3] 0.01 197439 1
## p[4] 0.01 200015 1
## p[5] 0.01 205708 1
## p[6] 0.01 204975 1
## p[7] 0.01 198228 1
## p[8] 0.01 193472 1
## p[9] 0.01 197279 1
## p[10] 0.01 193216 1
## p[11] 0.01 198090 1
## p[12] 0.01 203409 1
## p[13] 0.01 187908 1
## p[14] 0.01 187676 1
## p[15] 0.01 199284 1
## p[16] 0.01 196178 1
## p[17] 0.01 174493 1
## p[18] 0.01 185510 1
## p[19] 0.01 197305 1
## p[20] 0.01 196491 1
## p[21] 0.01 201517 1
## p[22] 0.01 193835 1
## p[23] 0.01 197673 1
## p[24] 0.01 206973 1
## p[25] 0.01 204791 1
## p[26] 0.01 223610 1
## p[27] 0.01 173517 1
## p[28] 0.01 177553 1
## p[29] 0.01 185722 1
## p[30] 0.01 189775 1
## p[31] 0.01 205773 1
## p[32] 0.01 197978 1
## p[33] 0.01 162531 1
## p[34] 0.01 161178 1
## p[35] 0.01 192443 1
## p[36] 0.01 188522 1
## phi 0.01 140068 1
## lambda 5002.43 100365 1
## alpha 39.78 97174 1
## beta 4962.91 100397 1
## x_rep[1] 1379.00 145301 1
## x_rep[2] 1014.00 145101 1
## x_rep[3] 885.00 145363 1
## x_rep[4] 779.00 145845 1
## x_rep[5] 636.00 145183 1
## x_rep[6] 518.00 145001 1
## x_rep[7] 489.00 144927 1
## x_rep[8] 467.00 145737 1
## x_rep[9] 425.00 145420 1
## x_rep[10] 385.00 145620 1
## x_rep[11] 350.00 145306 1
## x_rep[12] 334.00 145574 1
## x_rep[13] 326.00 145668 1
## x_rep[14] 326.00 145406 1
## x_rep[15] 320.00 145210 1
## x_rep[16] 319.00 145012 1
## x_rep[17] 283.00 145327 1
## x_rep[18] 271.00 145111 1
## x_rep[19] 257.00 145561 1
## x_rep[20] 233.00 144994 1
## x_rep[21] 228.00 145832 1
## x_rep[22] 219.00 145311 1
## x_rep[23] 217.00 145422 1
## x_rep[24] 208.00 145234 1
## x_rep[25] 200.00 144683 1
## x_rep[26] 169.00 145394 1
## x_rep[27] 152.00 145942 1
## x_rep[28] 78.00 143969 1
## x_rep[29] 69.00 144857 1
## x_rep[30] 69.00 145239 1
## x_rep[31] 68.00 145570 1
## x_rep[32] 49.00 142616 1
## x_rep[33] 48.00 143532 1
## x_rep[34] 42.00 144524 1
## x_rep[35] 33.00 145362 1
## x_rep[36] 31.00 143997 1
## x_rep[37] 5.00 142930 1
## lp__ -45401.10 57086 1
##
## Samples were drawn using NUTS(diag_e) at Fri Jul 26 11:29:36 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
stan_trace(fit1, pars=c("phi", "lambda"))
stan_dens(fit1, pars=c("phi", "lambda"), separate_chains = TRUE)
#stan_hist(fit1)
stan_dens(fit1, pars=c("x_rep[1]","x_rep[2]","x_rep[3]","x_rep[4]"))
ss = summary(fit1)$summary
ss
## mean se_mean sd 2.5%
## p[1] 9.014125e-03 6.047820e-07 2.716173e-04 8.489705e-03
## p[2] 1.088730e-02 8.584954e-07 3.717687e-04 1.017161e-02
## p[3] 1.083061e-02 8.888983e-07 3.949737e-04 1.007132e-02
## p[4] 9.505385e-03 9.095543e-07 4.067806e-04 8.723831e-03
## p[5] 9.571992e-03 9.937461e-07 4.507140e-04 8.708909e-03
## p[6] 8.463164e-03 9.608331e-07 4.350092e-04 7.631932e-03
## p[7] 7.395671e-03 9.370294e-07 4.171916e-04 6.597665e-03
## p[8] 9.029976e-03 1.085402e-06 4.774193e-04 8.115497e-03
## p[9] 9.369038e-03 1.151764e-06 5.115691e-04 8.396851e-03
## p[10] 9.784958e-03 1.248195e-06 5.486611e-04 8.742600e-03
## p[11] 6.810190e-03 1.055494e-06 4.697721e-04 5.916651e-03
## p[12] 7.892500e-03 1.122259e-06 5.061483e-04 6.930823e-03
## p[13] 6.433121e-03 1.066913e-06 4.624896e-04 5.557581e-03
## p[14] 5.082705e-03 9.690159e-07 4.197932e-04 4.288485e-03
## p[15] 8.532146e-03 1.193813e-06 5.329333e-04 7.520261e-03
## p[16] 9.075030e-03 1.309257e-06 5.798957e-04 7.976521e-03
## p[17] 5.253056e-03 1.104175e-06 4.612398e-04 4.384631e-03
## p[18] 7.931471e-03 1.305217e-06 5.621681e-04 6.867704e-03
## p[19] 7.792560e-03 1.318194e-06 5.855284e-04 6.684692e-03
## p[20] 6.766097e-03 1.253092e-06 5.554622e-04 5.719078e-03
## p[21] 9.463598e-03 1.492466e-06 6.699777e-04 8.202937e-03
## p[22] 7.526555e-03 1.353468e-06 5.958866e-04 6.396627e-03
## p[23] 9.832852e-03 1.563379e-06 6.950854e-04 8.519390e-03
## p[24] 7.187088e-03 1.332732e-06 6.063169e-04 6.045204e-03
## p[25] 7.541208e-03 1.471516e-06 6.659176e-04 6.289811e-03
## p[26] 8.069500e-03 1.527482e-06 7.223072e-04 6.717121e-03
## p[27] 5.768927e-03 1.959588e-06 8.162730e-04 4.255261e-03
## p[28] 6.740283e-03 2.137767e-06 9.007918e-04 5.074705e-03
## p[29] 6.390397e-03 2.059192e-06 8.874193e-04 4.739664e-03
## p[30] 7.692500e-03 2.220376e-06 9.672674e-04 5.903528e-03
## p[31] 8.102813e-03 2.417865e-06 1.096798e-03 6.108200e-03
## p[32] 8.429501e-03 2.539376e-06 1.129889e-03 6.368611e-03
## p[33] 5.648253e-03 2.502904e-06 1.009048e-03 3.785766e-03
## p[34] 6.271659e-03 2.774713e-06 1.113964e-03 4.210043e-03
## p[35] 7.255532e-03 2.719721e-06 1.193096e-03 5.071030e-03
## p[36] 7.662140e-03 3.724939e-06 1.617336e-03 4.768977e-03
## phi 7.925731e-03 8.409554e-07 3.147329e-04 7.310684e-03
## lambda 2.975211e+03 2.774674e+00 8.790310e+02 1.573744e+03
## alpha 2.357606e+01 2.253723e-02 7.025485e+00 1.242333e+01
## beta 2.951635e+03 2.752258e+00 8.720651e+02 1.561068e+03
## x_rep[1] 9.346461e+02 5.396123e-01 2.056917e+02 5.720000e+02
## x_rep[2] 6.849638e+02 3.972577e-01 1.513241e+02 4.180000e+02
## x_rep[3] 5.974714e+02 3.471135e-01 1.323421e+02 3.640000e+02
## x_rep[4] 5.253576e+02 3.053729e-01 1.166208e+02 3.190000e+02
## x_rep[5] 4.293095e+02 2.510987e-01 9.567598e+01 2.600000e+02
## x_rep[6] 3.484045e+02 2.050854e-01 7.809446e+01 2.110000e+02
## x_rep[7] 3.288479e+02 1.936110e-01 7.370636e+01 1.990000e+02
## x_rep[8] 3.132413e+02 1.845231e-01 7.044260e+01 1.890000e+02
## x_rep[9] 2.856332e+02 1.688596e-01 6.439285e+01 1.720000e+02
## x_rep[10] 2.584196e+02 1.529761e-01 5.837598e+01 1.550000e+02
## x_rep[11] 2.342781e+02 1.396110e-01 5.321843e+01 1.400000e+02
## x_rep[12] 2.236362e+02 1.333741e-01 5.088770e+01 1.340000e+02
## x_rep[13] 2.188325e+02 1.304340e-01 4.978208e+01 1.310000e+02
## x_rep[14] 2.183837e+02 1.304977e-01 4.976149e+01 1.300000e+02
## x_rep[15] 2.140903e+02 1.281489e-01 4.883296e+01 1.280000e+02
## x_rep[16] 2.137063e+02 1.279600e-01 4.872776e+01 1.280000e+02
## x_rep[17] 1.890697e+02 1.136911e-01 4.334112e+01 1.130000e+02
## x_rep[18] 1.808051e+02 1.090828e-01 4.155332e+01 1.070000e+02
## x_rep[19] 1.718127e+02 1.037607e-01 3.958734e+01 1.020000e+02
## x_rep[20] 1.548582e+02 9.440499e-02 3.594765e+01 9.100000e+01
## x_rep[21] 1.515598e+02 9.219739e-02 3.520828e+01 9.000000e+01
## x_rep[22] 1.452092e+02 8.871714e-02 3.381866e+01 8.600000e+01
## x_rep[23] 1.443209e+02 8.812943e-02 3.360750e+01 8.500000e+01
## x_rep[24] 1.379951e+02 8.464218e-02 3.225678e+01 8.100000e+01
## x_rep[25] 1.324224e+02 8.150268e-02 3.100139e+01 7.800000e+01
## x_rep[26] 1.114741e+02 6.924808e-02 2.640471e+01 6.500000e+01
## x_rep[27] 9.969236e+01 6.245457e-02 2.385915e+01 5.800000e+01
## x_rep[28] 4.976072e+01 3.400258e-02 1.290169e+01 2.700000e+01
## x_rep[29] 4.398594e+01 3.055099e-02 1.162774e+01 2.400000e+01
## x_rep[30] 4.393278e+01 3.040001e-02 1.158553e+01 2.400000e+01
## x_rep[31] 4.287799e+01 2.984996e-02 1.138886e+01 2.300000e+01
## x_rep[32] 3.075542e+01 2.295771e-02 8.669887e+00 1.600000e+01
## x_rep[33] 2.968007e+01 2.232727e-02 8.458825e+00 1.500000e+01
## x_rep[34] 2.593451e+01 2.000492e-02 7.605142e+00 1.300000e+01
## x_rep[35] 1.982784e+01 1.623348e-02 6.189244e+00 9.000000e+00
## x_rep[36] 1.843465e+01 1.546368e-02 5.867995e+00 8.000000e+00
## x_rep[37] 1.790222e+00 3.669648e-03 1.387351e+00 0.000000e+00
## lp__ -4.540898e+04 1.897896e-02 4.534592e+00 -4.541877e+04
## 25% 50% 75% 97.5%
## p[1] 8.830368e-03 9.010907e-03 9.196356e-03 9.552163e-03
## p[2] 1.063365e-02 1.088348e-02 1.113509e-02 1.162855e-02
## p[3] 1.056124e-02 1.082493e-02 1.109425e-02 1.162019e-02
## p[4] 9.227282e-03 9.499817e-03 9.777248e-03 1.031908e-02
## p[5] 9.265562e-03 9.564905e-03 9.871040e-03 1.047928e-02
## p[6] 8.165800e-03 8.456552e-03 8.753388e-03 9.336106e-03
## p[7] 7.110797e-03 7.387813e-03 7.673186e-03 8.233882e-03
## p[8] 8.706105e-03 9.020089e-03 9.346461e-03 9.990246e-03
## p[9] 9.017348e-03 9.357525e-03 9.709323e-03 1.039791e-02
## p[10] 9.412110e-03 9.774337e-03 1.014737e-02 1.089316e-02
## p[11] 6.488270e-03 6.799820e-03 7.121516e-03 7.757993e-03
## p[12] 7.547387e-03 7.879693e-03 8.225249e-03 8.920728e-03
## p[13] 6.117014e-03 6.419973e-03 6.739043e-03 7.373331e-03
## p[14] 4.792977e-03 5.073071e-03 5.361291e-03 5.932243e-03
## p[15] 8.167344e-03 8.521295e-03 8.883244e-03 9.611564e-03
## p[16] 8.677969e-03 9.062317e-03 9.456497e-03 1.025013e-02
## p[17] 4.935548e-03 5.240101e-03 5.555557e-03 6.195713e-03
## p[18] 7.544220e-03 7.917445e-03 8.303362e-03 9.066888e-03
## p[19] 7.390949e-03 7.778358e-03 8.178559e-03 8.988891e-03
## p[20] 6.385289e-03 6.751524e-03 7.131483e-03 7.895197e-03
## p[21] 9.004751e-03 9.446088e-03 9.906971e-03 1.081652e-02
## p[22] 7.116027e-03 7.512539e-03 7.919700e-03 8.740399e-03
## p[23] 9.356657e-03 9.814404e-03 1.029030e-02 1.124453e-02
## p[24] 6.769393e-03 7.171191e-03 7.588396e-03 8.417493e-03
## p[25] 7.083997e-03 7.523215e-03 7.979963e-03 8.901687e-03
## p[26] 7.571333e-03 8.046377e-03 8.546056e-03 9.545303e-03
## p[27] 5.201507e-03 5.740579e-03 6.302644e-03 7.447919e-03
## p[28] 6.116527e-03 6.702375e-03 7.327930e-03 8.599438e-03
## p[29] 5.777119e-03 6.358403e-03 6.968147e-03 8.222638e-03
## p[30] 7.025944e-03 7.654816e-03 8.316402e-03 9.706916e-03
## p[31] 7.337551e-03 8.051453e-03 8.809959e-03 1.039823e-02
## p[32] 7.645972e-03 8.376820e-03 9.153915e-03 1.080916e-02
## p[33] 4.946541e-03 5.605173e-03 6.304480e-03 7.739673e-03
## p[34] 5.502919e-03 6.228793e-03 6.990979e-03 8.585814e-03
## p[35] 6.434459e-03 7.201208e-03 8.018661e-03 9.764371e-03
## p[36] 6.549362e-03 7.562986e-03 8.668385e-03 1.114562e-02
## phi 7.716481e-03 7.923148e-03 8.132728e-03 8.556005e-03
## lambda 2.347950e+03 2.868286e+03 3.482281e+03 5.002432e+03
## alpha 1.855524e+01 2.269620e+01 2.761085e+01 3.978465e+01
## beta 2.329477e+03 2.845768e+03 3.454831e+03 4.962910e+03
## x_rep[1] 7.930000e+02 9.210000e+02 1.060000e+03 1.379000e+03
## x_rep[2] 5.810000e+02 6.740000e+02 7.770000e+02 1.014000e+03
## x_rep[3] 5.060000e+02 5.880000e+02 6.780000e+02 8.850000e+02
## x_rep[4] 4.450000e+02 5.170000e+02 5.970000e+02 7.790000e+02
## x_rep[5] 3.630000e+02 4.230000e+02 4.880000e+02 6.360000e+02
## x_rep[6] 2.940000e+02 3.430000e+02 3.960000e+02 5.180000e+02
## x_rep[7] 2.780000e+02 3.240000e+02 3.740000e+02 4.890000e+02
## x_rep[8] 2.650000e+02 3.080000e+02 3.560000e+02 4.670000e+02
## x_rep[9] 2.410000e+02 2.810000e+02 3.250000e+02 4.250000e+02
## x_rep[10] 2.180000e+02 2.540000e+02 2.940000e+02 3.850000e+02
## x_rep[11] 1.970000e+02 2.310000e+02 2.670000e+02 3.500000e+02
## x_rep[12] 1.890000e+02 2.200000e+02 2.550000e+02 3.340000e+02
## x_rep[13] 1.840000e+02 2.150000e+02 2.490000e+02 3.260000e+02
## x_rep[14] 1.840000e+02 2.150000e+02 2.490000e+02 3.260000e+02
## x_rep[15] 1.800000e+02 2.110000e+02 2.440000e+02 3.200000e+02
## x_rep[16] 1.800000e+02 2.100000e+02 2.440000e+02 3.190000e+02
## x_rep[17] 1.590000e+02 1.860000e+02 2.160000e+02 2.830000e+02
## x_rep[18] 1.520000e+02 1.780000e+02 2.060000e+02 2.710000e+02
## x_rep[19] 1.440000e+02 1.690000e+02 1.960000e+02 2.570000e+02
## x_rep[20] 1.300000e+02 1.520000e+02 1.770000e+02 2.330000e+02
## x_rep[21] 1.270000e+02 1.490000e+02 1.730000e+02 2.280000e+02
## x_rep[22] 1.220000e+02 1.430000e+02 1.660000e+02 2.190000e+02
## x_rep[23] 1.210000e+02 1.420000e+02 1.650000e+02 2.170000e+02
## x_rep[24] 1.160000e+02 1.360000e+02 1.580000e+02 2.080000e+02
## x_rep[25] 1.110000e+02 1.300000e+02 1.510000e+02 2.000000e+02
## x_rep[26] 9.300000e+01 1.100000e+02 1.280000e+02 1.690000e+02
## x_rep[27] 8.300000e+01 9.800000e+01 1.140000e+02 1.520000e+02
## x_rep[28] 4.100000e+01 4.900000e+01 5.800000e+01 7.800000e+01
## x_rep[29] 3.600000e+01 4.300000e+01 5.100000e+01 6.900000e+01
## x_rep[30] 3.600000e+01 4.300000e+01 5.100000e+01 6.900000e+01
## x_rep[31] 3.500000e+01 4.200000e+01 5.000000e+01 6.800000e+01
## x_rep[32] 2.500000e+01 3.000000e+01 3.600000e+01 4.900000e+01
## x_rep[33] 2.400000e+01 2.900000e+01 3.500000e+01 4.800000e+01
## x_rep[34] 2.100000e+01 2.500000e+01 3.100000e+01 4.200000e+01
## x_rep[35] 1.500000e+01 1.900000e+01 2.400000e+01 3.300000e+01
## x_rep[36] 1.400000e+01 1.800000e+01 2.200000e+01 3.100000e+01
## x_rep[37] 1.000000e+00 2.000000e+00 3.000000e+00 5.000000e+00
## lp__ -4.541183e+04 -4.540864e+04 -4.540576e+04 -4.540110e+04
## n_eff Rhat
## p[1] 201705.24 1.0000322
## p[2] 187529.58 0.9999753
## p[3] 197438.64 0.9999890
## p[4] 200015.29 0.9999904
## p[5] 205708.04 0.9999806
## p[6] 204975.06 0.9999863
## p[7] 198227.89 0.9999676
## p[8] 193472.16 1.0000063
## p[9] 197279.17 0.9999754
## p[10] 193216.21 0.9999665
## p[11] 198090.11 0.9999786
## p[12] 203408.73 0.9999746
## p[13] 187908.07 1.0000297
## p[14] 187676.13 0.9999876
## p[15] 199284.47 0.9999759
## p[16] 196177.70 0.9999723
## p[17] 174492.74 0.9999701
## p[18] 185509.85 0.9999955
## p[19] 197304.56 0.9999829
## p[20] 196491.34 0.9999910
## p[21] 201517.17 0.9999935
## p[22] 193834.60 0.9999848
## p[23] 197673.22 0.9999963
## p[24] 206972.92 0.9999879
## p[25] 204791.03 0.9999873
## p[26] 223610.34 0.9999674
## p[27] 173516.69 1.0000528
## p[28] 177553.05 1.0000076
## p[29] 185722.23 0.9999791
## p[30] 189775.44 0.9999938
## p[31] 205773.17 0.9999672
## p[32] 197978.44 0.9999708
## p[33] 162530.74 1.0000280
## p[34] 161178.09 1.0000414
## p[35] 192442.97 0.9999880
## p[36] 188521.91 0.9999732
## phi 140067.82 0.9999807
## lambda 100365.48 1.0001570
## alpha 97174.31 1.0001614
## beta 100396.71 1.0001569
## x_rep[1] 145301.42 1.0000178
## x_rep[2] 145101.41 1.0000242
## x_rep[3] 145362.81 1.0000213
## x_rep[4] 145844.81 1.0000336
## x_rep[5] 145183.40 1.0000112
## x_rep[6] 145001.02 1.0000209
## x_rep[7] 144927.18 1.0000182
## x_rep[8] 145736.87 1.0000068
## x_rep[9] 145419.94 1.0000025
## x_rep[10] 145620.08 1.0000270
## x_rep[11] 145306.37 1.0000187
## x_rep[12] 145573.59 1.0000377
## x_rep[13] 145668.06 1.0000075
## x_rep[14] 145405.52 1.0000157
## x_rep[15] 145209.91 1.0000127
## x_rep[16] 145012.25 1.0000111
## x_rep[17] 145327.34 1.0000062
## x_rep[18] 145110.64 1.0000004
## x_rep[19] 145561.50 1.0000224
## x_rep[20] 144994.32 1.0000215
## x_rep[21] 145831.86 1.0000054
## x_rep[22] 145310.80 1.0000202
## x_rep[23] 145422.11 1.0000079
## x_rep[24] 145234.00 1.0000049
## x_rep[25] 144683.30 1.0000044
## x_rep[26] 145394.26 1.0000081
## x_rep[27] 145942.41 1.0000028
## x_rep[28] 143969.17 1.0000290
## x_rep[29] 144857.22 1.0000082
## x_rep[30] 145239.31 1.0000183
## x_rep[31] 145570.36 1.0000044
## x_rep[32] 142616.44 1.0000001
## x_rep[33] 143532.03 1.0000104
## x_rep[34] 144524.28 0.9999892
## x_rep[35] 145362.44 1.0000229
## x_rep[36] 143997.15 1.0000319
## x_rep[37] 142930.13 0.9999999
## lp__ 57086.29 1.0001649
phi1 = ss["phi","mean"] # posterior mean of phi
lambda1 = ss["lambda","mean"] # posterior mean of lambda
alpha1 = lambda1*phi1
beta1 = lambda1*(1-phi1)
beta_mean <- function(alpha,beta) alpha/(alpha+beta)
beta_var <- function(alpha,beta) alpha*beta/((alpha+beta)^2*(alpha+beta+1))
phi1
## [1] 0.007925731
lambda1
## [1] 2975.211
alpha1
## [1] 23.58072
beta1
## [1] 2951.63
beta_mean(alpha1,beta1) # mean of p
## [1] 0.007925731
sqrt(beta_var(alpha1,beta1)) # sd of p
## [1] 0.001625399
pp = seq(0,1,length=1000)
plot(pp,dbeta(pp,alpha1,beta1),type="l") # distribution of p
ex1 <- rstan::extract(fit1)
names(ex1)
## [1] "p" "phi" "lambda" "alpha" "beta" "x_rep" "lp__"
p0=sum(data2$x)/sum(data2$n)
plot(data2$n_new, data2$x_new, type="n", xlab="投票総数", ylab="得票数", main="予測分布の95%区間", sub=paste("平均得票率=",signif(p0,4)),family=family)
#abline(a=0,b=phi1, col="red") # parameter estimates (=mean)
abline(a=0,b=p0, col="red") # = x/n
x_conf <- ss[paste("x_rep[",1:data2$N_new,"]",sep=""), c("2.5%","97.5%","50%","mean")]
segments(data2$n_new,x_conf[,1],data2$n_new,x_conf[,2],col="green")
points(data2$n_new, x_conf[,4],col="green" )
text(data2$n_new, data2$x_new, cex=0.5,col="red")
text(data2$n, data2$x, data2$id, cex=0.5)
ptail1 <- c()
for(i in 1:data2$N_new) ptail1[i] = mean(ex1$x_rep[,i] <= data2$x_new[i]) # lower tail
ptail1 <- 2*pmin(ptail1,1-ptail1) # posterior tail probability (two-tailed)
ptail10 <- ptail1; ptail10[ptail10==0] <- 1e-10 # set default for p=0
hist(ptail10,nclass=10,xlab="posterior probability")
plot of posterior tail probability. joetsu is actually p=0, but set to 10^-10 for log-plot.
plot(data2$n_new, ptail10, log="y", type="n", xlab="投票総数", ylab="事後確率", family=family)
text(data2$n_new, ptail10);
abline(h=0.05,col="blue") # 5%
abline(h=0.01,col="orange") # 1%
abline(h=0.001,col="red") # 0.1%
library(VGAM)
## Loading required package: stats4
## Loading required package: splines
ptail2 = pbetabinom.ab(data2$x_new,data2$n_new,alpha1,beta1)
ptail2 <- 2*pmin(ptail2,1-ptail2) # p-value (two-tailed)
hist(ptail2,nclass=10,xlab="p-value") # check if uniform on (0,1)
plot(ptail1,ptail2); abline(0,1)
plot of frequntist p-value (based on the estimated parameters by stan)
plot(data2$n_new, ptail2, log="y", type="n", xlab="投票総数", ylab="p値", family=family)
text(data2$n_new, ptail2);
abline(h=0.05,col="blue") # 5%
abline(h=0.01,col="orange") # 1%
abline(h=0.001,col="red") # 0.1%
phi1
## [1] 0.007925731
lambda1
## [1] 2975.211
alpha1
## [1] 23.58072
beta1
## [1] 2951.63
cbind(as.character(data2$city_new), ptail1, ptail2)
## ptail1 ptail2
## [1,] "長岡市" "0.479194444444444" "0.472491596698264"
## [2,] "上越市" "0" "3.84307810362392e-13"
## [3,] "中央区" "0.0979305555555556" "0.0830259951349011"
## [4,] "西区" "0.102222222222222" "0.0875131645362417"
## [5,] "東区" "0.323833333333333" "0.312612075219217"
## [6,] "三条市" "0.303625" "0.292350568065012"
## [7,] "新発田市" "0.682541666666667" "0.682643215995566"
## [8,] "柏崎市" "0.802347222222222" "0.787952360177446"
## [9,] "燕市" "0.459125" "0.45304508396282"
## [10,] "秋葉区" "0.351583333333333" "0.342320051743463"
## [11,] "北区" "0.248791666666667" "0.234470201532035"
## [12,] "村上市" "0.513541666666667" "0.496923224748353"
## [13,] "南魚沼市" "0.947013888888889" "0.953477616159549"
## [14,] "十日町市" "0.358486111111111" "0.339528111162337"
## [15,] "佐渡市" "0.0540833333333333" "0.0398253901415737"
## [16,] "江南区" "0.6475" "0.645718478123923"
## [17,] "西蒲区" "0.436180555555556" "0.428638473908783"
## [18,] "糸魚川市" "0.0710416666666667" "0.0542853276023904"
## [19,] "五泉市" "0.927694444444444" "0.932609616522397"
## [20,] "阿賀野市" "0.997916666666667" "0.995927313483905"
## [21,] "魚沼市" "0.487277777777778" "0.468273520181109"
## [22,] "見附市" "0.313069444444444" "0.300627661967117"
## [23,] "小千谷市" "0.865388888888889" "0.853733911733157"
## [24,] "南区" "0.222319444444445" "0.209959191963094"
## [25,] "妙高市" "0.684652777777778" "0.672860017636591"
## [26,] "胎内市" "0.869208333333333" "0.860823511877214"
## [27,] "加茂市" "0.846222222222222" "0.851237843641421"
## [28,] "阿賀町" "0.106847222222222" "0.090162036337366"
## [29,] "聖籠町" "0.419888888888889" "0.403367177244446"
## [30,] "田上町" "0.267972222222222" "0.252648839998035"
## [31,] "津南町" "0.958888888888889" "0.952102393525368"
## [32,] "弥彦村" "0.783333333333333" "0.785525116519834"
## [33,] "湯沢町" "0.603736111111111" "0.601169781524318"
## [34,] "関川村" "0.0455" "0.037783651748282"
## [35,] "刈羽村" "0.149527777777778" "0.137286834725477"
## [36,] "出雲崎町" "0.655402777777778" "0.64361905083257"
## [37,] "粟島浦村" "0.950083333333333" "0.946225963028565"
(x = sum(data2$x))
## [1] 7927
(n = sum(data2$n))
## [1] 917973
(p= x/n)
## [1] 0.00863533
ptail3 = pbinom(data2$x_new,data2$n_new,p)
ptail3 <- 2*pmin(ptail3,1-ptail3) # p-value (two-tailed) with Binomial
hist(ptail3,nclass=10,xlab="p-value (Binomial)") # check if uniform on (0,1)
plot(ptail2,ptail3); abline(0,1)
ptail3
## [1] 1.292703e-01 7.634938e-213 1.318079e-11 4.471641e-10 1.648690e-02
## [6] 1.808143e-02 7.947882e-01 5.423240e-03 3.047340e-01 8.898368e-02
## [11] 1.374743e-02 2.876663e-04 1.893969e-01 1.051758e-05 9.536274e-14
## [16] 9.806163e-01 3.151734e-01 5.054898e-11 2.774301e-01 2.030293e-01
## [21] 1.675758e-03 1.115310e-01 8.983691e-02 3.050654e-02 2.660637e-02
## [26] 1.393036e-01 5.576124e-01 4.542911e-04 4.246570e-02 1.201152e-02
## [31] 4.461637e-01 8.787387e-01 8.172285e-01 9.106200e-04 1.811491e-02
## [36] 3.002932e-01 8.362501e-01
for(i in 1:data2$N_new) {
hist(ex1$x_rep[,i], nclass=100, xlab="得票数", main=paste("事後予測分布 (",data2$city_new[i],")"), sub=paste(i,":", data2$city_new[i],", 事後確率=", signif(ptail1[i],4), ", p値=", signif(ptail2[i],4)), xlim=range(c(ex1$x_rep[,i],0,data2$x_new[i])), family= family) # histogram of posterior distribution
abline(v = data2$x_new[i], col="red" ) # observed value
}