set.seed(1234)

nigata data

read table & rounding to integers

dat <- read.csv("nigata.csv")
colnames(dat) <- c("city", "sosu", "tokuhyo")
data = list(N=nrow(dat), x=round(dat$tokuhyo), n=round(dat$sosu), city=as.character(dat$city))

remove jouetsu from data : THIS IS DIFFERENT FROM THE PREVIOUS ANALYSIS

In data2 (N, n, x), joetsu is removed from data. The original data is now renamed as N_new, n_new, x_new. N, n, x are used for computing posterior distribution. Then predictive distribution is computed for n_new, and posterior probability is computed at x_new.

id2 = (1:data$N)[-2] # 2=joetsu
data2 = list(N=data$N-1, x=data$x[id2], n=data$n[id2], id=id2, city=data$city[id2], N_new=data$N, x_new=data$x, n_new=data$n, city_new=data$city)

plot

plot(data2$n_new, data2$x_new, type="n", xlab="投票総数", ylab="得票数", family=family); text(data2$n_new, data2$x_new, cex=0.5,col="red") ; text(data2$n, data2$x, data2$id, cex=0.5)

Computing posterior distributions (Bayesian inference)

stan

library(rstan)
## Loading required package: StanHeaders
## Loading required package: ggplot2
## rstan (Version 2.19.2, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
rstan_options(auto_write=TRUE)
options(mc.cores=parallel::detectCores()) 

fit

betabinom3 = stan_model("betabinom3.stan")
fit1 <- sampling(betabinom3, data=data2, chains=8, warmup=2000, iter=20000)

stan diagnostics

fit1
## Inference for Stan model: betabinom3.
## 8 chains, each with iter=20000; warmup=2000; thin=1; 
## post-warmup draws per chain=18000, total post-warmup draws=144000.
## 
##                mean se_mean     sd      2.5%       25%       50%       75%
## p[1]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[2]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[3]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[4]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[5]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[6]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[7]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[8]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[9]           0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[10]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[11]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[12]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[13]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[14]          0.01    0.00   0.00      0.00      0.00      0.01      0.01
## p[15]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[16]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[17]          0.01    0.00   0.00      0.00      0.00      0.01      0.01
## p[18]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[19]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[20]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[21]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[22]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[23]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[24]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[25]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[26]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[27]          0.01    0.00   0.00      0.00      0.01      0.01      0.01
## p[28]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[29]          0.01    0.00   0.00      0.00      0.01      0.01      0.01
## p[30]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[31]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[32]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[33]          0.01    0.00   0.00      0.00      0.00      0.01      0.01
## p[34]          0.01    0.00   0.00      0.00      0.01      0.01      0.01
## p[35]          0.01    0.00   0.00      0.01      0.01      0.01      0.01
## p[36]          0.01    0.00   0.00      0.00      0.01      0.01      0.01
## phi            0.01    0.00   0.00      0.01      0.01      0.01      0.01
## lambda      2975.21    2.77 879.03   1573.74   2347.95   2868.29   3482.28
## alpha         23.58    0.02   7.03     12.42     18.56     22.70     27.61
## beta        2951.63    2.75 872.07   1561.07   2329.48   2845.77   3454.83
## x_rep[1]     934.65    0.54 205.69    572.00    793.00    921.00   1060.00
## x_rep[2]     684.96    0.40 151.32    418.00    581.00    674.00    777.00
## x_rep[3]     597.47    0.35 132.34    364.00    506.00    588.00    678.00
## x_rep[4]     525.36    0.31 116.62    319.00    445.00    517.00    597.00
## x_rep[5]     429.31    0.25  95.68    260.00    363.00    423.00    488.00
## x_rep[6]     348.40    0.21  78.09    211.00    294.00    343.00    396.00
## x_rep[7]     328.85    0.19  73.71    199.00    278.00    324.00    374.00
## x_rep[8]     313.24    0.18  70.44    189.00    265.00    308.00    356.00
## x_rep[9]     285.63    0.17  64.39    172.00    241.00    281.00    325.00
## x_rep[10]    258.42    0.15  58.38    155.00    218.00    254.00    294.00
## x_rep[11]    234.28    0.14  53.22    140.00    197.00    231.00    267.00
## x_rep[12]    223.64    0.13  50.89    134.00    189.00    220.00    255.00
## x_rep[13]    218.83    0.13  49.78    131.00    184.00    215.00    249.00
## x_rep[14]    218.38    0.13  49.76    130.00    184.00    215.00    249.00
## x_rep[15]    214.09    0.13  48.83    128.00    180.00    211.00    244.00
## x_rep[16]    213.71    0.13  48.73    128.00    180.00    210.00    244.00
## x_rep[17]    189.07    0.11  43.34    113.00    159.00    186.00    216.00
## x_rep[18]    180.81    0.11  41.55    107.00    152.00    178.00    206.00
## x_rep[19]    171.81    0.10  39.59    102.00    144.00    169.00    196.00
## x_rep[20]    154.86    0.09  35.95     91.00    130.00    152.00    177.00
## x_rep[21]    151.56    0.09  35.21     90.00    127.00    149.00    173.00
## x_rep[22]    145.21    0.09  33.82     86.00    122.00    143.00    166.00
## x_rep[23]    144.32    0.09  33.61     85.00    121.00    142.00    165.00
## x_rep[24]    138.00    0.08  32.26     81.00    116.00    136.00    158.00
## x_rep[25]    132.42    0.08  31.00     78.00    111.00    130.00    151.00
## x_rep[26]    111.47    0.07  26.40     65.00     93.00    110.00    128.00
## x_rep[27]     99.69    0.06  23.86     58.00     83.00     98.00    114.00
## x_rep[28]     49.76    0.03  12.90     27.00     41.00     49.00     58.00
## x_rep[29]     43.99    0.03  11.63     24.00     36.00     43.00     51.00
## x_rep[30]     43.93    0.03  11.59     24.00     36.00     43.00     51.00
## x_rep[31]     42.88    0.03  11.39     23.00     35.00     42.00     50.00
## x_rep[32]     30.76    0.02   8.67     16.00     25.00     30.00     36.00
## x_rep[33]     29.68    0.02   8.46     15.00     24.00     29.00     35.00
## x_rep[34]     25.93    0.02   7.61     13.00     21.00     25.00     31.00
## x_rep[35]     19.83    0.02   6.19      9.00     15.00     19.00     24.00
## x_rep[36]     18.43    0.02   5.87      8.00     14.00     18.00     22.00
## x_rep[37]      1.79    0.00   1.39      0.00      1.00      2.00      3.00
## lp__      -45408.98    0.02   4.53 -45418.77 -45411.83 -45408.64 -45405.76
##               97.5%  n_eff Rhat
## p[1]           0.01 201705    1
## p[2]           0.01 187530    1
## p[3]           0.01 197439    1
## p[4]           0.01 200015    1
## p[5]           0.01 205708    1
## p[6]           0.01 204975    1
## p[7]           0.01 198228    1
## p[8]           0.01 193472    1
## p[9]           0.01 197279    1
## p[10]          0.01 193216    1
## p[11]          0.01 198090    1
## p[12]          0.01 203409    1
## p[13]          0.01 187908    1
## p[14]          0.01 187676    1
## p[15]          0.01 199284    1
## p[16]          0.01 196178    1
## p[17]          0.01 174493    1
## p[18]          0.01 185510    1
## p[19]          0.01 197305    1
## p[20]          0.01 196491    1
## p[21]          0.01 201517    1
## p[22]          0.01 193835    1
## p[23]          0.01 197673    1
## p[24]          0.01 206973    1
## p[25]          0.01 204791    1
## p[26]          0.01 223610    1
## p[27]          0.01 173517    1
## p[28]          0.01 177553    1
## p[29]          0.01 185722    1
## p[30]          0.01 189775    1
## p[31]          0.01 205773    1
## p[32]          0.01 197978    1
## p[33]          0.01 162531    1
## p[34]          0.01 161178    1
## p[35]          0.01 192443    1
## p[36]          0.01 188522    1
## phi            0.01 140068    1
## lambda      5002.43 100365    1
## alpha         39.78  97174    1
## beta        4962.91 100397    1
## x_rep[1]    1379.00 145301    1
## x_rep[2]    1014.00 145101    1
## x_rep[3]     885.00 145363    1
## x_rep[4]     779.00 145845    1
## x_rep[5]     636.00 145183    1
## x_rep[6]     518.00 145001    1
## x_rep[7]     489.00 144927    1
## x_rep[8]     467.00 145737    1
## x_rep[9]     425.00 145420    1
## x_rep[10]    385.00 145620    1
## x_rep[11]    350.00 145306    1
## x_rep[12]    334.00 145574    1
## x_rep[13]    326.00 145668    1
## x_rep[14]    326.00 145406    1
## x_rep[15]    320.00 145210    1
## x_rep[16]    319.00 145012    1
## x_rep[17]    283.00 145327    1
## x_rep[18]    271.00 145111    1
## x_rep[19]    257.00 145561    1
## x_rep[20]    233.00 144994    1
## x_rep[21]    228.00 145832    1
## x_rep[22]    219.00 145311    1
## x_rep[23]    217.00 145422    1
## x_rep[24]    208.00 145234    1
## x_rep[25]    200.00 144683    1
## x_rep[26]    169.00 145394    1
## x_rep[27]    152.00 145942    1
## x_rep[28]     78.00 143969    1
## x_rep[29]     69.00 144857    1
## x_rep[30]     69.00 145239    1
## x_rep[31]     68.00 145570    1
## x_rep[32]     49.00 142616    1
## x_rep[33]     48.00 143532    1
## x_rep[34]     42.00 144524    1
## x_rep[35]     33.00 145362    1
## x_rep[36]     31.00 143997    1
## x_rep[37]      5.00 142930    1
## lp__      -45401.10  57086    1
## 
## Samples were drawn using NUTS(diag_e) at Fri Jul 26 11:29:36 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).
stan_trace(fit1, pars=c("phi", "lambda"))

stan_dens(fit1, pars=c("phi", "lambda"), separate_chains = TRUE)