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Imagenet Large Scale Visual
Recognition Challenge 2012

(ILSVRC2012)

IMAGENET Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
Hald In conjunction with PASCAL Visual Object Classes Challenge 2012 (VOC2012)

Back o Main pape

All results
Task 1 (clagsification)
Task 2 (localization)

.
= Task 3 (fine-prained classilication)
» Team infarmation and abstracts

Task 1

Team name Filename Error (5 guesses) Description

Using extra training data
from Imagetéat Fall 2011
release

test-preds-141-148,2008-131-
Shipor ol 137-145-146.2011-1481, i

g 131137~ 5 i
su s tast-preds-131-137-145-135 Grauss Using only supplied

14800t training data

‘Weighted sum of scares
from each classifier with
SIFT+FV, LBP+FV,
GIST+FV, and
CSIFT+FV, respectively,

I8l pred_FVs_wLACs_weighted.txt | D.26172

Weighted sum of scores
from classifiars using
each FV.

181 prod_FVs_weighted. et 0.26602

Naive sum of scares from
[1-1] pred_FVs_summed.bd 0.26646 clnsél using each FV.

Naive sum of scores from
each classifler with
SIFT+FV, LBP+FV,
GIST+FV, and
CSIFT+FV, respectivaly.

181 pred_FVs wLACS summed.txt 0.26952

Mixed salaction from
High-Lavel SVM scores
and Basaline Scores,
dactsion is parformed by
looking al the validation
parformance

OXFORD_VGG test_adhocrmi_classification. b 0.26879

XRCENRIA res_1M_svm.bet 0.27058

High-Laval 5¥M over
Fine Level Classdication
score, DPM score and
Bassline Classification

OXFORD_VGG test_finecls_classificaion. D.2707e

http://image-net.org/challenges/LSVRC/2012/

IMJGENET Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
Held in conjunction with PASCAL Visual Object Classes Challenge 2012 (VOC2012)

Introduction Task Timetable Citafion™" Organizers Contact Workshop Download Evaluation Server
News

» September 2, 2014: A new paper which describes the collection of the ImageNet Large Scale Visual Recognition Challenge dataset,
analyzes the results of the past five years of the and even P current
now available. Please cite it when reporting ILSVRC2012 results or using the dataset.
March 19, 2013: Check out LSVF{Q 2013

January 26, 2012 |s up. Now you can evaluate you own results against the competition entries,

December 21, 2012: Additional analysis of th mpetition r
miaaaacL

with human accuracy is

-

IM GENET

Not logged in. Logn | Signup

Z . ey
Kit fox, Vulpes macrotis 829 60.83% L
Small grey fox of southwestern United States; may be a subspecies of Vulpes velox pictures ::ﬂr&ﬂlltg V-g‘:mhel

0 Mumbers in brackets: (the number of

Treemap Visualization
Fymats in the subires |

Images of the Synset Downloads
* ImageMet 2011 Fall Release (32326)
plant, flora, plant life (4486)
gealogical formation, formatian (17
natural object (1112)
sport, athletics (176)
artifact, artefact (10504)
fungus (308)
I person, individual, someona, somek
* animal, animate being, beast, brute
- invertebrate (766)
| homeotherm, homaiotherm, hor
- work animal (4)
darter (0)
survivor (0)
range animal (0)
creapy-crawly (0)
domestic animal, domesticated 'P
|- malter, moulter (0)
warmint, varment {0}
|- mutant (0)
critter (0)
game (47)
young, offspring (45}
poskilatherm, ectotherm (0)
herbivore (0)
peaper (0)
pest (1)
- female (4)
|- insectivore (0)
|- pet (0)
I L snnndanbtan (0

“images of children symeets ane not inchuded. A1l images shown are thusénalls, images may be sbject to comyright
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Krizhevsky et al. (NIPS 2012)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Tlya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
krizfcs.utoronto.ca ilyaflcs.utoronto.ca hintonBeos.utoronto.ca

Abstract

We trained a larpe, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previons state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce ing in the fully-co d
layers we employed a recently-dk ped i method called “dropout™
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object ition make tial use of machine learning methods. To im-
prove their performance, we can collect larger datasets, leamn more powerful models, and use bet-
ter techniques for preventing overfitting, Until recently, datasets of labeled images were mlatively
small — on the order of tens of thousands of images (e.g.. NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,

pecially if they are ang d with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-re cognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabeIMe [23], which
consists of hundreds of tt is of fully. d images, and [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a modzl with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don't have. Convolutional neural networks
{CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their dzpth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely. stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.

Our model

« Max-pooling layers follow first, second, and
fifth convolutional layers

« The number of neurons in each layer is given
by 253440, 186624, 64896, 64896, 43264,
4096, 4096, 1000

dense BN

Max

pocling

4096
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Imagenet Large Scale Visual
Recognition Challenge 2014

(ILSVRC2014)

IMJAGENET Large Scale Visual Recognition Challenge 2014 (ILSVRC2014)

Introduction History Data Tasks FAQ Development kit Timetable Citation™ Organizers Sponsors Contact

News
: . ; Classification+localization
= June 2, 2015: Additional announcement regarding submission sarver policy is released.
= May 19, 2015: Announcement regarding submission server policy is released. X age s s . : N Py
. Cocaiiboil SHIBYEC AR & st Task 2a: Classification+localization with provided training data
. ber 2, 2014: A new paper which the collection of the ImageNet Large Scale Visual Recognition Challenge dataset, _ 2 e = 2 i
analyzes the results of the past five years of the challenge, and even comp current with human y Is Classification+ with p g data: O by localization error
now available. Please cife it when reporting ILSVRC2014 resulfs or using the dataset.
* August 18, 2014: Check out the New York Times article about ILSVRC2014. W L i ion|Cl ificati
« Augut 18,2014 Bols aorloaso. Team name  [Entry description Ieff;"zam ool
+ August 18, 2014: Test server is open, = = = =
« July 25, 2014: Submission server is now open. VGG a combination of multiple ConvNets (by averaging) 10.253231 0.07405
* July 15, 2014: C: | resources courtesy of NVIDIA. T ] "} 7 T
« July3, 2014: Please note that the August 15th deadline is firm this year and will not be extended. VGG 3;%2&??;&? of multiple ConviNets {(fusion welgits leamt on the 0.253501 0.07407
* June 25, 2014; You can now browse all annotated detection images.
« May 3, 2014: ILSVAC2014 development kit and data are available. Please register to abtain the download finks. a combination of multiple ConvNets, including a net trained on
« April 8, 2014: Registration for ILSVAC2014 is open, Please register your team. VGG images of different size (fusion done by averaging); detected boxes 0.255431 0.07337
* January 18, 2014: Preparations for imageNet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014) are underway. Stay were not updated
el a combination of multiple ConvNets, including a net trained on
Introduction VGG images of different size (fusion weights learnt on the validation set); |0.256167 0.07325
) ) ) detected boxes were not updated
This for object d and image at large scale. This year there will be two P - - -
GoogleNet  |Model with localization ~26% top5 val error. [0.264414  |0.14828
1. APASCAL-style detection chall fully labeled data for 200 ies of objects, and T - n T
2. Animage : w: ubi:f kb By w?:‘::'::;_ 2 GoogLeNet Model with localization ~26% top5 val error, limiting number of 0964495  |0.12724
NEW: This year all participants are encouraged o submit object localization results; in past challenges, submissions to classes.
ification and classification with localization tasks were accepted VGG a single ConvNet (13 convolutional and 3 fully-connected layers)  |0.267184 0.08434
One high level is 1o allow 0 compare progress in across a wider variety of objects - taking advantage of \We compared the class-specific localization accuracy of solution 1
the quite expensive labeling etfort. Anather isto the of vision for large scale image indexing for and solution 2 by the validation set. Then we chosen better solution
einenl s ainotsiion. SYSU_Vision |on each class based on the accuracy. General speaking, solution 2 [0.31899 0.14446
History outformed solution 1 when there were multiple objects in the image
or the objects are relatively small.
et MIL 5 top instances predicted using FV-CNN [0.337414  [0.20734
+ ILSVRC 2011 5 top instances predicted using FV-CNN + class specific window
+ ILSVRC 2010 MiL size rejection. Flipped training images are added. 0.33843 0.21023
Data T We just simply averaged the result between solution 1 and solution
SYSU_Vision 5% Yorm ol Solution ., 0.338741 0.14446
Dataset 1: Detection MIL 5 top instances predicted using FV-CNN + class specific window |1 540008 [0 20823
As in ILSVRC2013 there will be object detection task similar in style 1o PASCAL VOC Challenge. There are 200 basic-level categories for size rejection : 5
this task which are fully annotated on the test data, i.e. bounding boxes for all categories in the image have been labeled. The categories MSRA Visual 1 I
were carefully chosen considering different factors such as object scale, level of image clutterness, average number of object instance, and Lot s il e ke e e e e ol pe et
several others. Some of the test images will contain none of the 200 categories. 1 4

NEW: The training set of the detection dataset will be ifh

Cmmim Wi ol S Wl v

this year to ILSVRC2013. 0BS5S new images have
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Ny 2705 —2 3> (3 Backpropagation) & 7/cldREWE
%k (cage < TaldiEs) Nz, gmeBcsnwe, =a—
FIWRY N T—0 2ZBIEZRICAVWSNBEZILTUXLATH
%, 19864 (cbackwards propagation of errors (A D3R
=GB OO STEY R - SXN\—K Slck>TwmiEh
12,

BNEDRW2BD_1—ZI)LRY 7=V TCOHANRENSD
ReEM AR Tik(d 19604 ICB. Widrow & M.E. Hoff, Jr. St
Widrow-Hoff 3% (FILFIL—IL) EWSaFitRkL 1 B4
ENEBOH33BULOYIE. 1967FICHAIB—HRKRL
1=Bl6l, zp#, AELEREIN. 1969F(C7—H—E- 7
Z4 Y (&EER) (Arthur E. Bryson) &AiE (=R A%
BB AT ARELFRE LcRRELEL B, =5 —5)u%
v NT—2 BT BEERRULXEME LT, 1974F0/R—
- 7—RR @EEw Plhtg s, 1986F0TEY R - 5 X)L/
—h Yz I7U—-EVrY, OFLR - J Y0 UPLR (55
w 10RIsp@EmIc & DEB L. BIc1986FEDRRUBE=1—
SRy NT—OREINSEEERVBEE LT BT EICR T,
Ky o70\7—=2a3>TE. AIZa—-Ay(FkR /-
R ) TEDNZEECEEA M TRIFNIERS R,

https://ja.wikipedia.org/wiki//\v 2 FOsF—< 3 Y

LZAICCETCLND

XA7=h~0OY

FAIY=kAY (3 Neocognitron) (. T980FRICEBEFHEICL >
TREBSNEREN. ZBLINATI=2—FILRry NT—U TH B,
FEEZNFRHALZOMD/Y —VREORBEICAVShTED, BAHA
H=a—FIxy T ORBOTE R,

AN bAVREL—NILET 1 —ILH1959FICRIBLIEETIL
HEFEBE/ TS, WSIF THHME cemR 1 BT MEMMERE (=
BR) 1 EMENZ—RERTFO2EFEOMBEREL. /\y—VB#ES

A7 RBVWTHEAENS N S2EEOMBO N R — REFILEREL
£ 121131

XA RAVRBINEDHRT—RETFILHBRICRELIHDTH
3, *A /= P OVREROBEOEEI SBREN, ZOHTRLE
S TSR B&U TCHEL SMEN3E , BATSMEIESH
BIcL>THREE. BUNERL (local shift) Wl S DFEOE
HIECHIBICERSNTWS, ANTOBFSHER. BnBicL->T
e icazn, MEEhz, BRSMEOHAORMIE. LeNetE
FILP® SIFT (&= ETILE WS FOMEROETILCHREShD,

AT/ hOvicigL sEENEET 20, fizE. srBORA
7= kO BEEY7HILERAWSZ EICE > TR—ADFOEH

DING —>EBRHTE, BIRER (selective attention) ZERT
307,

https://ja.wikipedia.org/wiki/#4 a4 =ty
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Geoffrey Hinton receives the IEEE/RSE James Clerk Maxwell
Medal - Honors Ceremony 2016

l EEE.m Tune in to where technology lives.
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e A N | COMING o 15 June,11am EDT (3pm  Information Extraction fr

~ 1N ' SOON LIVE GMT/UTC) Resolution Satellite Imag

> |EEE Awards > Geoffrey Hinton receives the IEEE/RSE lames Clerk Maxwell Medal - Honors Ceremony 2016

&IEEE 2016 IEEE HONORS CEREMONY

0

GEOFFREY

HINTON © .
E/

w UTURE

> C1 0231 OB = *
Geoffrey Hinton receives the IEEE/RSE TrTrTrey 706 views
James Clerk Maxwell Medal - Honors @ Download ¢ Share
Ceremony 2016
W IEE pecials

President Barry Shoop presents the |EEE/RSE (Royal Society of Edinburgh) James Clerk Maxwell Medal to
Geoffrey Hinton for his groundbreaking contributions to Machine Leaming and Neural Network Learning.

Hinton’s work is still on the forefront today.
Maore
Published on June 28, 2016

https://ieeetv.ieee.org/ieeetv-specials/geoffrey-hinton-receives-the-ieee-rse-james-clerk-maxwell-
medal-honors-ceremony-2016?rf=channels%7C9&
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Amazon
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Alphabet 16.6B
13.1B

o

Intel

Microsoft $12.3B
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Apple
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Johnson & Johnson

2
&

Merck
Ford

&
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Facebook

Pfizer
By Robert Scoble General Motors

]

Oracle
201 7T ZFAY HER THEREBICREVCENBVWBICEER S v/ LIcE 23, Amazon G
Dy 70230 FILHI2.5kMA) T, MU TERE S| EMIEEOREET>TWEZ EHHES Celgene
ﬁ\tﬁoﬁbto Qualcomm

IBM
Amazon spent nearly $23 billion on R&D last year - Recode Data for latest fiscal year
https://www.recode.net/2018/4/9/17204004/amazon-research-development-rd A Y, SRS

https://gigazine.net/news/20180411-amazon-research-development-rd/ v
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Abstract

A class of predictive densities is derived by weighting the observed samples in maximizing
the log-likelihood function. This approach is effective in cases such as sample surveys or design
of experiments, where the observed covariate follows a different distribution than that in the
whole population. Under misspecification of the parametric model, the optimal choice of the
weight function is asymptotically shown to be the ratio of the density function of the covariate
in the population to that in the observations. This is the pseudo-maximum likelihood estima-
tion of sample surveys. The optimality is defined by the expected Kullback-Leibler loss, and
the optimal weight is obtained by considering the importance sampling identity. Under correct
specification of the model, however, the ordinary maxinmum likelihood estimate (i.e. the uniform
weight) is shown to be optimal asymptotically. For moderate sample size, the sitation is in
between the two extreme cases, and the weight function is selected by minimizing a variant
of the information criterion derived as an estimate of the expected loss. The method is also
applied to a weighted version of the Bayesian predictive density. Numerical examples as well
as Monte-Carlo simulations are shown for polynomial regression. A connection with the robust
parametric estimation is discussed. (€) 2000 Elsevier Science B.V. All rights reserved.

MSC: €2B10; 62D05

Keywords: Akaike information criterion; Design of experiments; Importance sampling;
Kullback—Leibler divergence; Misspecification; Sample surveys; Weighted least squares

1. Introduction

Let x be the explanatory varable or the covariate, and y be the response variable.
In predictive inference with the regression analysis, we are interested in estimating the
conditional density g(y|x) of y given x, using a parametric model. Let p(y|x,8) be the
model of the conditional density which is parameterized by 6=(8',...,8™) € @ C #".

* Correspond address: D of Statlstics, Sequoia Hall, 390 Serra Mall, Stanford University,
Stanford, CA 943054065, USA,
E-mail address: shi i=m.acjp (H. Shimodaira)
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Fig. 1. Fitting of polynomial regression with degree J =1. (a) Samples (x, ») of size n= 100 are generated
from gf p|xgo(x) and plotted as circles, where the underlying true curve is indicated by the thin dotted line.
The solid line is obtained by OLS, and the dotted line is WLS with weight g1(x)/go(x). (b) Samples of
n =100 are generated from g{y|x)g){x), and the regression line is obtained by OLS.

On the other hand, MWLE f,, is obtained by weighted least squares (WLS) with
weights w(x;) for the normal regression. We again consider the model with d =1,
and the regression line fitted by WLS with w(x) =gq(x)/go(x) is drawn in dotted line
in Fig. la. Here, the density ¢,(x) for imaginary “future” observations or that for the
whole population in sample surveys is specified in advance by

* ~ N, 1), (24)
where 4 = 0.0, 13 =0.3%. The ratio of q,(x) to go(x) is

0 _ ep(-(-mPRdn ( e ﬁF)
@~ exp(—(x— f P25 2 )

where ¥ = (172 — 1,9)"! =038, and = (17 m — 157 ) = —028.

The obtained lines in Fig. la are very different for OLS and WLS. The question
is: which is better than the other? It is known that OLS is the best linear unbiased
estimate and makes small mean squared error of prediction in terms of g( y|x)go(x)
which generated the data. On the other hand, WLS with weight (2.5) makes small
prediction error in terms of g( y|x)qi(x) which will generate future observations, and
thus WLS is better than OLS here. To confirm this, a dataset of size n = 100 is
generated from g(y|x)q:(x) specified by (2.2) and (2.4). The regression line of d =1
fitted by OLS is shown in Fig. 1b, which is considered to have small prediction error
for the “future” data. The regression line of WLS fitted to the past data in Fig. la is
quite similar to the line of OLS fitted to the future data in Fig. 1b. In practice, only
the past data is available. The WLS gave almost the equivalent result to the future
OLS by using only the past data.

(2.5)
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Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey Ioffe
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Abstract

Training Deep Neural is i v the fact
that the distribution of each layer's inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower leaming
rates and careful parameter initialization, mdmaiwsnm
toriously hard to train models with i

Christian Szegedy
Google Inc., szegedy@ google.com

Using mini-batch a3 opp
ple at a time, is helpful in several ways. First, the pradient
of the loss over a mini-batch is an estimate of the gradient
ower the raining set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, duc to the parallelism afforded by the modem

ties. We refer to this as internal
shift, and address the problem by normalizing layer in-
ization a part of the model architecture and performing the
nommalization for cach mraiming moni-batch. Bamch Nor-
ization allows us to use much higher and
be less careful about initialization. It also acts as a regu-
larizer, in some cases eliminating the need for Dropout.
Applied to a stats-of-the-art image classification model,
Batch Normalization achieves the same accuracy with 14
times fewer wraining steps, and beats the original model
hyzangmﬁcammzzgm Using an ensemble of batch-

While ic pradient is simple and effective, it
requires careful mning of the model hyper-parameters,
specifically the leaming rate uzed in optimization, azs well
as the initial values for the model parameters. The wain-
ing iz complicated by the fact that the inputs to each layer
are affected by the parameters of all preceding layers — s0
that small changes to the network parameters amplify as
the network becomes deeper.

The change in the distributions of layers” inputs
presents a problem becanse the layers need to continu-
onsly adapt to the new distribution. When the input dis-
uilmnmmalcanungsymchmgea it iz said to experi-

, we imp; ipon the best
rezult on ImageNet classification: reaching 4.9% top-3
validation error (and 4.8% test error), exceeding the ac-
curacy of human raters.

1 Imtroduction

Deep leaming has dramatically advanced the state of the
art in vision, speech, and many other areas. Stochas-
tic pradient descent (SGD) has proved to be an effec-
tive way of training deep networks, and 5GD varians
such as momentum (Sutskever et al., 2013) and Adagrad
{Druchi et al , 2011) have been used to achieve state of the
ant - SGD optimizes the © of the
network, 50 25 to minimize the loss

N
.
6= argmin & gﬂ(xu,eJ

where x;.. ¥ is the training data set. With SGD, the train-
ing proceeds in steps, and at each step we congider a ming-
batch x; _y of size m. The mini-batch is used to approx-
mmdtmmmufmmfummwnhmwtmﬂm

ence shift ira, 2000). This is typically
handled via domain adaptation (Jiang, 2008). Howewver,
the notion of covariate shift can be extended beyond the
leamning system as a whole, to apply to its parts, such as a
sub-network or a layer. Consider a network computing

t=F3(Fy(1,©,),8;)
where Fy and Fy are arbitrary transformations, and the
parameters €4, 8y are to be leamed 50 as to minimize
the loss £, Leaming O can be viewed as if the inputs
x = Fy(u,8) are fed into the sub-network
£ = Fa(x, B2).
For example, a pradient descent step

SF(x, B2)
B Gy — — %y —
E =N

(for ize m and | rate o) is exactly
to that for a stand-alone network Fy with input x. There-
fore, the input distribution propertics that make training
maore efficient — such as having the same distribution be-
tween the training and test dam — apply to maining the
sub-network as well. As such it is advantapeous for the
distribution of x to remain fized over time. Then, &, does

indicate that the parameters v and # are to be learned,
but it should be noted that the BN mansform does not

process the ion in each Taining ex-
ample. Rather, BN, z(x) depends both on the maining
example and the other examples in the mini-baich. The
scaled and shifted values y are passed to other network
layers. The nommalized activations ¥ are intemal to our

{Duchi et al , 2011). The normalization of activations that
depends on the mini-batch allows efficient training, but is
neither necessary nor desirable during inference; we want
the output to depend only on the input, determindstically.
nomalization

z x —E[z]

ransformation, but their presence is crucial. The distri- VVarfz] + €

butons of values of any 7 has the expected value of 0

and the variance of 1, askmgasﬂ:zelememxufeach mmmm mmmlhﬁhwmm

mini-batch are sampled from the same di and e

if we neglect ¢. '[mscanbeseenby ins that meanﬂamivanmelasdnmlgmzm; We use the un-
PG ‘biased variance estimate Varfr] = ™, . Eglof], where

TomiF o= 0and L3N, #F = 1, and taking expec-

tations. Each normalized activation 39 can be viewed as
an input to a sub-network composed of the linear trans-
form y'*) = MFk) 4 508 followed by the other pro-
cessing done by the criginal network . These sub-network
inputs all have fixed means and variances, and although
the joint distribution of these normalized %%/ can change
over the course of waining, we expect that the introduc-
tion of normalized inputs accelerates the waining of the
sub-network and, consequently, the network as a whole.

meummonlsoveru:mgmlhmhesnfmmm
g are their sample variances. Using moving averages in-
stead, we can wack the accuracy of a model as it trains.
Since the means and variances are fixed during inference,
the normalization is simply a linear wansform applied to
each activation. It may further be with the scal-
ing by -y and shift by 2, to vield a single linear transform
that replaces BN(z). Algorithm 2 summarizes the proce-
dure for training batch-normalized networks.

During waining we need to the gradi-
ent of loss £ throngh this ransformation, as well as com-
pute the gradients with respect to the parameters of the
EN transform. We use chain rule, as follows (before sim-

introduces normalized activations into the network. This

mmthatasﬂlemudelismmg layers can continue

that exhibit less i

the maining. F

the leamed affine transform applied to these nommalized
allows the BN ] the iden-

tity mansformation and preserves the network capacity.

31 Training and Inference with Batch-
Normalized Networks

To Batch-Normalize a network, we specify a subset of ac-
tivations and insert the BN transform for each of them,
according to Alg. 1. Any layer that previously received
= as the input, now receives BN(x). A model employing
Barch Normalization can be wrained using batch gradient
descent, or Stochastic Gradient Descent with a mini-batch
size m = 1, or with any of its variants such as Adagrad

Input: Nerwork N with trainable parameters ©;
subset of activations {=% }C_,

Output: Barch ized network for i Nt
1: My« N /i Training BN network
zfork=1...K do
% Add mansformation 3'¥ = BN, g (™)

Ny (Ale. D)

4 Modify each layer in Ny with input =% to take
y'*) instead

5- end for

& Train Ny to optimize the parameters & U
4&1,315
% A\‘};“{{F‘\"’ !fﬁ}fﬂmmmmﬁm
i parameters
e fork=1...K do
s JForclarity, e = 2,y = 4%, ug = 1) et
1-  Process mmliple training mini-batches B, eariuxf
size m, and average over them:
E[x] + Eglus]
Varlz] + 2 Esloh]

1= In N, replace the transform y = BN, 5(z) with

= dame A= )

12 end for

Algorithm 2: Training a Batch-Nomalized Network

3.2 Batch-Normalized Convolutional Net-
works

Baich Nommalization can be applied to any set of act-
vatons in the network. Here, we focus on ransforms
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Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stabk: traming of deep neural networks (DNNs). Despite its
pervasivencss, the exact reasons for BatchNorm's effectivencss are still poorly
understood The popular belief is that this cffe stems from 1l
the change of the layers’ input distributions during training to redoce the so«'.a]hd
“internal covariate shift”. In this work, we that such distrit
stability of layer i mpu!s has Inttle to do with the success of BatchNorm. Insead.
we uncover 4 more fund | impact of BatchNorm on the training process: it
makes the opt 1 b This induces
1 more pmdv:twe and stable behavicr of the gradients, allowing for faster training.
These findings bring us closer to a true unde rstanding of our DNN trining toolkit.

1 Introduction

Ower the last decade, deep learning has made 1mpmsl\e e vnnety of notariously
difficult tasks in computer vision [13. 6], speech [4] [24]. and
game-playing [14, ..0] This progress hinged on a number of major advances in terms of hardware,
datasets [12, 18], and algorithmic and architectural techniques [22, 10, 15, 23]. One of the most
I ks of such was batch lization (BatchMNorm) [8].

At a high level, BatchNorm is a technigue that aims to improve training of neural networks by
stabilizing the distributions of layer inputs. This is achieved by introducing additional network layers
that control the first two moments (mean and variance) of these distributions,

The practical success of BarchNorm is indisputable. By now, itis used by defanlt in most deep learning
models, both in research (more than 4,000 citations) and mnl world settings. Sarrewhsr shockingly,
however, despite its prominence, we still have a poor of what the of
BatchNorm is stemming from. In fact, there are now a number of works that provide alternatives to
BatchMorm[ 1, 2, 11, 26]. but none of them seem to bring us any closer to understanding this issue.
(A similar point was also raised recently in [17].)

Currently, the most widely d explanation of BatchMormm's success, as well as its cngmaj
‘motivation, relates to so-called internal covariate shift (ICS). Informally, ICS mefers to the change in
the distribution of layer inputs cansed by updates to the preceding layers. It is conjectured that such
continoal change negatively impacts training. The goal of BatchMorm was to reduce ICS and thus
temedy thiseffect.

Even though this explanation is widely accepted, we seem to have little concrete evidence in its
support. In particular, we still do not wnderstand the link between ICS and training performance.

*Equal contribution.

Preprint. Work in progress.

standard, non-BatchNorm network, yet it still performs better in terms of training. (Figure 8
Appendix B plots the variation in the mean and variance of the comesponding distributions. )

Clearly, these findings are hard to reconcile with the claim that the performance gain due to Batch-
MNorm stems from increased stability of layer input distributions.

22 1Is BatchNorm reducing internal covariate shift?

Our findmgs in Section 2.1 make it apparent thatr ICS is not directly connected to the training
performance. At least if we tie ICS to stability of the mean and variance of input distributions. One
might wonder, however: Is there a broader notion of internal covariate shift that has such a direct link
to traming performance? And if =0, does BatchNomm indeed reduce this notion?

Recall that each layer can be seen as solving an empirical risk minimization problem where given
a st of inputs, it is optimizing some loss function (that possibly involves later layers). An update
ta the parameters of any previous layer will change these inputs, thus changing this empirical risk
minimization problem itself. This p:cnommlon isat I:hecme of the intuition that Ioffe and Szegedy [8]
provide internal shift. § , they try to capture this phenomenon from
the penspeclwe of the resulting distributional changes in layer i inputs. However, as demonstrated in
Section 2.1, this perspective does not seem to properly the roots of BarchNorm's success.

To address this issue, we atiempt to capture internal covariate shift from a perspective that is mare
tied to the underlying opt (After all the success of BatchMNorm is largely of
an optimization nature.) Since the mammg procedure is o first-order method, the gradient of the
loss 1s the most natural object to study. To quantify the extent to which parameters in a layer would
have to “adjost” in reaction to o parameter update in the previous layers, we measure the difference
between the gradients of each layer before and after updates to all the previous layers. This leads to
the following definition.

Definition. Let £ be the loss W{", ..., Wy be the parameters and (2%, y!®)) be the batch of
input-label pairs used to train the netwark gt time £, We define internal covariae shift (ICS) of
activation i at time t to be the difference ||Gyy — G4 ||o. where

Gey= lell oW, ... W‘E‘): 240, y(9)
Cly = Vo LW, WD W W w200, 00,

Here, G4 comesponds to the gradient of the layer parameters that would be applied during a
simultancous update of all layers (as is typical). On the other hand, &7} | is the same gradient after all
the previous layers have been updated with their new volues, The difference between & and G thus
reflects the change in the optimization landscape of Wy caused by the changes to its input. It thus
captures precisely the effect of cross-layer dependencies that could be problematic for training.

Equipped with this definition, we measure the extent of ICS with and without BatchMNorm layers. To
account for the effect of non-linearities as well as gradient stochasticity, we also perform this anabysis
on (25-layer) deep linear mtwod:x (DLNTI trained with full-batch gradient descent (see Appendx A
for details). The g of BatchNorm suggests that the addition of BatchNorm
layers n the network should increase the comelation between & and &, thereby reducing ICS.

Surprisingly, as shown in Figure 3, we observe that networks with BatchNorm exhibit an increase in
their ICS. This is particularly striking in the case of DLN at low leaming rates. Here, the standard
metwork experiences almost no ICS for the entirety of training, whereas for BatchNorm it appears
that 7 eand &' are almost uncorme lated. We emphasize that this is the case even though BarchNorm
networks continue to perform drastically better in terms optimization of sccuracy and lees (The
stabilization of the BatchMorm VGG network later in training s an artifact of faster convergence.)
This evidence suggests that, from optimization point of view, controlling the distributions layer inputs
as done in BatchNorm, might noteven reduce the internal covariate shift.
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