負のサンプルサイズ(日本語の資料)

マルチスケール・ブートストラップでは負のサンプルサイズが出てきます.オリジナルデータのサンプリサイズをn,ブートストラップデータのサンプルサイズをn’とします.オリジナルデータからn’個の要素をリサンプリングしてブートストラップデータを作ります.このときn’=nとするのが普通のブートストラップです.マルチスケール・ブートストラップではn’>0の値をいくつか設定します.たとえばn’=0.5n, 1.0n, 1.5n みたいにします.するとブートストラップ確率という信頼度はn’の関数になります.この関数をスケーリング則といいます.スケーリング則の理論式をつかって,n’ = -nに外挿すると,頻度論の不偏なp-値が得られます.ちなみに普通のブートストラップでn’ = nとするのはベイズの事後確率に相当します.したがって,n’ = nから n’ = -nにすると,ベイズが頻度論になります.実際には分散=n/n’の関数としてスケーリング則を表します.分散=1から0をとおって−1まで外挿しますので,n’でみるとn’=nから0の方向ではなく無限大の方向に動かします.n’=-nにどういう意味があるのかはよくわかりません.

(次の日本語資料では,n’をmと書いています)

(IBIS2016のスライドより)


(日本統計学会誌 2012年の論文より)