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Abstract

A class of predictive densities is derived by weighting the observed samples in
maximizing the log-likelihood function. This approach is effective in cases such as
sample surveys or design of experiments, where the observed covariate follows a dif-
ferent distribution than that in the whole population. Under misspecification of the
parametric model, the optimal choice of the weight function is asymptotically shown
to be the ratio of the density function of the covariate in the population to that
in the observations. This is the pseudo-maximum likelihood estimation of sample
surveys. The optimality is defined by the expected Kullback-Leibler loss, and the
optimal weight is obtained by considering the importance sampling identity. Under
correct specification of the model, however, the ordinary maximum likelihood esti-
mate (i.e. the uniform weight) is shown to be optimal asymptotically. For moderate
sample size, the situation is in between the two extreme cases, and the weight func-
tion is selected by minimizing a variant of the information criterion derived as an
estimate of the expected loss. The method is also applied to a weighted version of
the Bayesian predictive density. Numerical examples are shown for the polynomial

regression, and geometrical interpretations are given for a better understanding.

Keywords: Akaike information criterion; Design of experiments; Importance
sampling; Kullback-Leibler divergence; Misspecification; Sample surveys; Weighted

least squares.




1 Introduction

Let = be the explanatory variable or the covariates, and y be the response variable.
In predictive inference, such as the regression analysis, we are interested in estimating
the conditional density ¢(y|z) of y given z, using a parametric model; a family of the
conditional densities p(y|z,8) parameterized by 0 = (#,...,0™) € © C R™. Having
observed i.i.d. samples of size n, denoted by (z(™,y™) = ((xt w) :t=1,...,n), we
obtain a predictive density p(y|x,0) by giving an estimate § = B(x("),y(")). In this
paper, we discuss improvement of the maximum likelihood estimate (MLE) under both of
(i) covariate shift in distribution and (ii) misspecification of the model as explained below.

Let ¢1(z) be the density of z for evaluation of the predictive performance, while go(z)
be the density of x in the observed data. We consider the Kullback-Leibler loss function

loss;(f) : / (x / q(y|z) log p(y|z, 6) dy dx

for i = 0,1, and then employ loss; (#) for evaluation of 8, rather than the usual losso(6).
The situation go(z) # ¢1(z) will be called as covariate shift in distribution, which is one
of the premises of this paper.

This situation is not so odd as it might look at first. In fact, it is seen in various fields
as follows. In sample surveys, go(z) is determined by the sampling scheme, while ¢; (z)
is determined by the population. In regression analysis, covariate shift often happens
because of the limitation of resources, or the design of experiments. In artificial neural
networks literature, “active learning” is the typical situation where we control go(z) for
better prediction. We could say that the distribution of z in future observations is different
from that of the past observations; x is not necessarily distributed as ¢, (z) in future, but
we can give imaginary ¢;(z) to specify the region of x where the prediction accuracy
should be controlled. Note that go(z) and/or g;(z) are often estimated from data, but we
assume they are known or estimated reasonably in advance.

The second premise of this paper is misspecification of the model. Let §, be the MLE
of 8, and 85 be the asymptotic limit of 6y as n — oco. Under certain regularity conditions,
MLE is consistent and p(y|z, 63) = g(y|z) provided that the model is correctly specified.
In practice, however, p(y|z,85) deviates more or less from q(y|z).

Under both of the covariate shift and the misspecification, MLE does not necessarily
provide a good inference. We will show that MLE is improved by giving a weight function
w(z) of the covariate in the log-likelihood function:

Ly (0]z™,y™) := = > lu(z,u00), (1.1)

t=1

where [, (z,y|0) = —w(z)logp(y|z,d). Then the maximum weighted log-likelihood esti-
mate (MWLE), denoted by 6, is obtained by maximizing (1.1) over ©. It will be seen
that the weight function w(z) = ¢;(z)/qo(z) is the optimal choice for sufficiently large n




in terms of the expected loss with respect to ¢,(z); we denote MWLE with this weight
function by él. MWLE turns out to be down-weighting the observed samples which are
not important in fitting the model with respect to the population. A comparison between
6o and 6, is made in the numerical example of polynomial regression of Section 2, and the
asymptotic optimality of 6, is shown in Section 3.

This type of estimation is not new in statistics. Actually, 6, is regarded as a gener-
alization of the pseudo-maximum likelihood estimation in sample surveys (Skinner et al.,
1989, p. 80; Pfeffermann et al., 1998); the log-likelihood is weighted inversely proportional
to go(x), the probability of selecting unit z, while ¢,(z) is equal probability for all z. The
same idea is also seen in Rao (1991), where weighted maximum likelihood estimation is
considered for unequally spaced time series data.

Note that the local likelihoods or the weighted likelihoods formally similar to (1.1)
are found in the literature for semi-parametric inference. However, 4, is estimated using
a weight function concentrated locally around each z or (z,y) in the semi-parametric
approach; thus 6,, in p(y|z, 8,) will depend on (z,y) as well as the data (z(™,y™). On
the other hand, we restrict our attention to a rather conventional parametric modeling
approach here, and 6, depends only on the data.

The construction of the rest of the paper is as follows. In spite of the asymptotic
optimality of w(z) = ¢1(x)/qo(x), another choice of the weight function can improve the
expected loss for moderate sample size. The optimal weight is obtained by compromising
the bias and the variance of ,, as explained in the asymptotic expansion of the expected
loss given in Section 4. Then, in Section 5, an information criterion is derived to find
a good w(z) as well as a good form of p(y|z,8) from data, and the numerical example
is revisited in Section 6. In Section 7, we show the Bayesian predictive density is also
improved by considering the weight function. In Section 8, we try to give geometrical
interpretations of our approach. Finally, concluding remarks are given in Section 9. All
the proofs are deferred to the appendix.

2 Illustrative example in regression

Here we consider the normal regression to predict the response y € R using a polynomial
function of z € R. Let the model p(y|z, 8) be the polynomial regression

y=Bo+ 0z +- -+ Bz’ +¢ CNN(O,Cf?)a (2.1)

where 6 = (B, ...,84,0) and N(a,b) denotes the normal distribution with mean a and
variance b. In the numerical example below, we assume the true g(y|z) is also given by
(2.1) with d = 3:

y=-z+2°+¢ e~ N(0,0.3%). (2.2)




The density go(z) of the covariate z is
T ~ N(ug, 73), (2.3)

where o = 0.5, 78 = 0.52. This corresponds to the sampling scheme of z or the design of
experiments, and a dataset (z(™, y(™) of size n = 100 is generated from (2.2) and (2.3),
and plotted by circles in Fig. 1a. MLE 6, is obtained by the ordinary least squares (OLS)
for the normal regression; we consider a model of the form (2.1) with d = 1, and the
regression line fitted by OLS is drawn in solid line in Fig. 1a.

On the other hand, MWLE 4, is obtained by weighted least squares (WLS) with
weights w(xz;) for the normal regression. We again consider the model with d = 1, and
the regression line fitted by WLS with w(z) = ¢:(z)/go(z) is drawn in dotted line in
Fig. la. Here, the density ¢;(z) for imaginary “future” observations or that for the whole
population in sample surveys is specified in advance by

T~ N(p’lv 7-12)? (24)

where y; = 0.0, 72 = 0.3%. The ratio of ¢;(z) to g(z) is

_ - 2 2 2 Y/
ale) _eolce i ordin (o= 00 25
90(z)  exp(—(z — po)?/27¢) /70 27
where 72 = (172 — 75°2)7! = 0.382, and 7 = 72(1; 2py — 75 2pg) = —0.28.

The obtained lines in Fig. 1a are very different for OLS and WLS. The question is:
which is better than the other? It is known that OLS is the best linear unbiased estimate
and makes small mean squared error of prediction in terms of q(y|z)qgo(z) which generated
the data. On the other hand, WLS with weight (2.5) makes small prediction error in terms
of q(y|z)q:(z) which will generate future observations. To confirm this, a dataset of size
n = 100 is generated from g¢(y|z)q;(z) specified by (2.2) and (2.4). The regression line
of d =1 fitted by OLS is shown in Fig. 1b, which is considered to have small prediction
error for the “future” data. The regression line of WLS fitted to the past data in Fig. 1a
is quite similar to the line of OLS fitted to the future data in Fig. 1b. In practice, only
the past data is available. We obtained almost the equivalent result to the future OLS by
using only the past data.

The underlying true curve is the polynomial with d = 3, and thus the regression line of
d = 1 cannot be fitted to it nicely over all the region of z. However, the true curve is almost
linear in the region of y; + 27y, and the nice fit of the WLS in this region is obtained by
throwing away the observed samples which are outside of this region. Note that “effective
sample size” may be defined in terms of the entropy by n. = exp(— X1, p; log p;), where
pe = w(z,)/ Yj—, w(zy). In the WLS above, n, = 49.3, which is about the half of the
original sample size n = 100, and then increases the variance of the WLS. This is discussed

later in detail.




Figure 1: Fitting of polynomial regression with degree d = 1. (a) Samples (z;,y;) of size
n = 100 are generated from gq(y|z)go(x) and plotted in circles, where the underlying true
curve is indicated by the thin dotted line. The solid line is obtained by OLS, and the
dotted line is WLS with weight ¢,(z)/go(x). (b) Samples of n = 100 are generated from
9(y|z)gqi(x), and the regression line is obtained by OLS.

3 Asymptotic properties of MWLE

Let E;(-) denote the expectation with respect to g(y|z)gi(z) for i = 0,1. Considering
—Ly(0) is the summation of ii.d. random variables l,(z;,1|0), it follows from the law
of large numbers that —L,,(0)/n — Ey(ly(z,y|f)) as n grows infinity. Then we have
6, — 62, in probability as n — oo, where 8, is the minimizer of Ey(l,(z,y|0)) over 8 € O.
Hereafter, we restrict our attention to proper w(z) such that Eo(l,(z,y|f)) exists for all
9 € © and that the Hessian of Eo(l,,(z,y|f)) is non-singular at 6%, which is uniquely
determined and interior to ©.

If the above result is applied to w(z) = ¢i(z)/qo(z), we find that §;, converges in
probability to the minimizer of loss;(f) over # € ©, which we denote #;. Here the key
idea is the importance sampling identity:

Eo{qog glogp ylz,0) } /q ylz)go(z ilogz)( |z,6) dz dy = E\ (log p(ylz, 0)),
(3.1)
which implies Ey(ly(z,y|0)) = loss;(f) and 6}, = 6; when w(z) = q,(z)/go(z).
From the definition of 6}, loss;(f) > loss;(6}) for other choice of w(z). Except
for the equivalent weight w(z) o< ¢i(z)/go(z), the equality loss, (%) = loss,(6?) holds
not for all g(y|z), and so we have loss,(8;) > loss,(6}) in general. Thus loss,(f,) >

lossl(él) for sufficiently large n, and the asymptotically optimal weight of MWLE is




w(z) = 0(2)/ao(z).

01 has consistency in a sense that it converges to the optimal parameter value. How-
ever, §, is more efficient than 6, in terms of the asymptotic variance. This will be impor-
tant for moderate sample size, where n is large enough for the asymptotic expansions to
be allowed, but not enough for the optimality of 6, to hold. Hence we give the asymptotic
distribution of 8, for the subsequent sections. The derivation is parallel to that of MLE
under misspecification given in White (1982); we replace log p(y|z, §)go(z) for MLE with

w(z) log p(y|z, 8)go(z) of MWLE.

Lemma 1 Assume the regularity conditions similar to those of White (1982), for exzam-
ple, the model is sufficiently smooth and the support of p(y|z,0) is the same as that of
q(ylz) for all 6 € ©. Also assume 07, is an interior point of ©. Then, nz (6, — 0:) s
asymptotically normally distributed as N(0, H,'G,H;'), where G, and H, are m x m
matrices defined by

Olu(z,y0)| Olw(z,yld) } {32lw(ﬂf,y|9) }
w=E , H,=E{—2>2J07) 1 2
¢ °{ 30 o, 06 o Hu = Eo\ 5400 o (3:2)

which are assumed to be non-singular.

4 Expected loss

In the previous section, optimal choice of w(z) was discussed in terms of the asymptotic
bias 8}, — 6;. For moderate sample size, however, the variance of éw due to the sampling
error should be considered. In order to take account of both of the bias and the variance,
we employ the expected loss E§" (loss;(fy)) to determine the optimal weight; E{™ ()
denotes the expectation with respect to (z(™,4™) which follows [Ty a(ye|ze)go(zy).

Lemma 2 The expected loss is asymptotically expanded as
n A 1
E{™ (loss (B,,)) = loss, (8%,) + ;{K},}]’bw + %tr(KLf]Hu‘,‘GwHu‘,l)} +0(n7%),  (4.1)
where the elements of K1 and K are defined by

d* log p(y|z, 0)
KWy, = - {q‘ (z) 0" log p(yla,
( w ) 1 k 0 qo(x) 89“ . a@lk

3
03

and by, is the asymptotic limit of nE((,") (8., — 6,), which is of order 0(1).

Although it is not essential to the rest of the paper, the expression for b, is given in the

following lemma. We use the summation convention 4;B¢ = ™ A;iB' in the formula.




Lemma 3 The elements of b,, = lim,_,o, nE(")(ﬂw — 03) are given by

1

bfﬁ = Htiz;isz{;ljz{(HE.ll)izjl'jz - E(Hgl)izjllezﬁlh(Hg-l])kz'jz}’ (4'2)

where H)] denotes the (i, ) element of HZ', and

ok, (z,y|0)
(k] — L At A M
(Hin = Bol g 20 o;,}’
O ly(z,y|0)| 0y (z,y|6)
elly, v At
(Hw )ll"-tk‘Jl'"Jl - Eo{agil R - I 8 0z, o001 ... P 9..0}'

Note that the matrices defined in (3.2) are written as G,, = HI'Y and H, = HP.

For sufficiently large n, loss; (8;,) is the dominant term in the right hand side of (4.1),
and the optimal weight is w(z) = ¢;(x)/qo(z) as seen in Section 3. If n is not large
enough compared with the extent of the misspecification, the O(n™!) terms related to the
first and second moments of 8,, — 6;, cannot be ignored in (4.1), and the optimal weight
changes. In an extreme case where the model is correctly specified, we only have to look
at the O(n™!) terms.

Lemma 4 Assume there exists §* € © such that q(y|z) = p(y|z,6%). Then, g;, = 60* and
q(ylz) = p(ylz,0;,) for all proper w(z). The ezpected loss Eén)(lossl (8,)) is minimized
when w(z) =1 for sufficiently large n.

5 Information criterion

The performance of MWLE for a specified w(z) is given by (4.1). However, we cannot
calculate the value of the expected loss from it in practice, because ¢(y|z) is unknown.
We provide a variant of the information criterion as an estimate of (4.1).

Theorem 1 Let the information criterion for MWLE be
ICy == —2Ly(0,) + 2tr(J,HJY), (5.1)

where

q1(z) dlog p(y|z, )

‘11
lo z, szE{
tz; 0 8P yt| t,9), 0 qo(x) 90

8lw(x,y|9), }
o, 00, gy )

The term tr(J,H, 1) may be called as “effective dimension,” and the matrices J,, and H,
may be replaced by their consistent estimates

alw (xta Ut |0)
O oo’

_ 1 & qil=z) Olog p(yi|, 6)
n t=1 QO(-'L't) 69

1 2
» Ho= EZ 5006

0w

E{M(1C, /2n) = E{™ (loss (6,)) + O(n~3). (5.2)




Given the model p(y|z, §) and the data (z™,y(™), we choose a weight function w(z)
which attains the minimum of IC,, over a certain class of weights. This is selection of
weight rather than model selection. Searching the optimal weight over all the possible
forms of w(z) is equivalent to n-dimensional optimization problem with respect to (w(z;) :
t =1,...,n). But we do not take this line here, because of the computational cost as
well as a conceptual difficulty in it. Rather than the global search, we shall pick a better
one from the two extreme cases of w(z) = 1 and w(z) = ¢ (z) /a0(z), or consider a class
of weights by connecting the two extremes continuously:

A
w(z) = (gﬁ%) L Ae), (5.3)
where A = 0 corresponds to éo and A = 1 corresponds to él. In the next section, we
numerically find A which minimizes IC, by searching over A € [0,1]. Note that (5.3) is
proportional to N(f, 72/)) in the case of (2.5), and A~% is the window scale parameter.

When we have several candidate forms of p(y|z,8), the model and the weight are
selected simultaneously by minimizing IC,,. A similar idea of the simultaneous selection is
found in Shibata (1989), where an information criterion RIC is derived for the penalized
likelihood. A crucial distinction, however, is that the weight for @ is selected in RIC,
whereas the weight for z is selected in IC,. Another distinction is that the weight is
additive to the log-likelihood in RIC, while it is multiplicative in IC,,.

Akaike (1974) gave an information criterion

AIC = —2L(fy) + 2dim 8, (5.4)

where Lg(0) is the log-likelihood function. AIC is intended for MLE, and it is obtained
as a special case of IC,,. When ¢,(z) = go(z) and w(z) = 1, IC,, reduces to

TIC = —2Ly(6o) + 2 tr(GoHy "),

where Gy = G, and Hy = H,, when w(z) = 1. TIC is derived by Takeuchi (1976) as a
precise version of AIC, and it is equivalent to the criterion of Linhart & Zucchini (1986).
If p(yl|z, 65) is sufficiently close to g(y|z), tr(GoHy"') ~ dim @ and TIC reduces to AIC.

6 Numerical example revisited

For the normal linear regression, such as the polynomial regression given in (2.1), §-
components of 6, is obtained by WLS with weights w(z;). o-component of 8, is then
given by 6% = Y1 w(x,)é? /é,, where &, = =) w(z,) and & is the residual. Letting A,
t=1,...,n be the diagonal elements of the hat matrix used in the WLS, the information
criterion (5.1) is calculated from

~2
€ ~2
{55 + log(2r6 )}, (6.1)

—L, (éw) =

N[ =

q(

= q1(x¢)
2 oz



Py @) (& w(m) @\ '
tr(Jo H )=t=1m{§ht+ . (? - 1) } (6.2)

We apply the above formulas to the data generated from (2.2) and (2.3) in Section 2.
Fig. 2a shows the plot of the information criterion and its two components for d = 2. By
increasing A from 0 to 1, the first term of (5.1) decreases while the second term increases
in general. We numerically find ) so that the two terms balance. For d = 2, IC,, takes the
minimum 32.62 at A = 0.56. The regression curves obtained by this method are shown in
Fig. 2b.

Table 1 shows IC,, values for d = 0,...,4. For each d, IC, is minimized at A = \.
Then, IC,, of ) is minimized at the model d = 3. By minimizing IC,,, A and d are
simultaneously selected. For d = 3, it turns out that A = 0.01 ~ 0. In fact, the model of
d = 3 is correctly specified in this dataset, and it follows from Lemma 4 that by is optimal
for d > 3. Even in such a situation, the appropriate ) is selected by minimizing IC,,.

In practical data analysis, it would be rare to have correctly specified models at hand.
Therefore, we exclude d > 3 from the above example, and restrict the candidates to
d < 3. Then, d = 2 is selected, and d = 1 has almost the same IC,, value, while d = 0
has significantly larger IC,, value. This agrees with the asymptotic result that (4.1) is
minimized when A=1and d =1 overd ¢ {0, 1,2}, for sufficiently large n.

Table 1: IC,, values with weight (5.3) for A\ =0, A =1, and A = X. Also shown is \ value.
Calculated for the polynomial regression example of Section 2 with d = 0,...,4.

d=0 d=1 d=2 d=3 d=14

A=0 13872 174.02 63.59 2897 31.75
A=1 73.96 33.23 33.64 34.80 34.98
A=) 7392 3268 3262 2896 31.75
A 095 0.77 056 001 0.00

7 Bayesian inference

We have been working on the predictive density

p(ylz, b,), (7.1)

which is based on MWLE 8,. This type of predictive density is occasionally called as

estimative density in literature. Another possibility is the Bayesian predictive density.

Here we consider a weighted version of it, and examine its performance in prediction.
Let p(6) be the prior density of 6. Given the data (™, y(™), we shall define the

weighted posterior density by

Pu(8)2™, y™) o p(8) exp Ly, (8|2, y™). (7.2)
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Figure 2: (a) Curve of IC, versus A € [0,1] for the model of Section 2 with d = 2.
The weight function (5.3) connecting from w(z) = 1 (ie. A = 0) to w(z) = q1(z)/go(x)
(i.e. A = 1) was used. Also shown are —2L,(8,,) in dotted lines, and 2tr(J,H,') in broken
lines. (b) The regression curves for d = 2. The WLS curve with the optimal ) as well as
those for OLS (A = 0) and WLS (A = 1) are drawn.

Then the predictive density will be

pulylz, o,y = [ plylz, 0)pu(012, y) do. (7.3)

In the case of w(z) = 1, (7.2) reduces to the ordinary posterior density, and (7.3) reduces
to the ordinary Bayesian predictive density.
The Kullback-Leibler loss of (7.3) with respect to q(y|z)q(z) is

- / a(z) / q(y|z) log py (y|z, 2™, y™) dy dx

and thus the expected loss is given by

By (Ey(~ log pu(ylz, 2, y™))). (7.4)

Lemma 5 For sufficiently large n, (7.4) is asymptotically ezpanded as

E{ (10ss, (B)) + ~ {Kmbw—iu«K“” KMMI)}+d N, (7.5)

o)

w

where
dlog p(y|z,0)
o:, a0

. ) Olog p(yz, 0)
K [1-1) =E {‘h (‘T)
ot 0 qo(z) o0

and a,, = plim,_, _ a,, is the probability limit of

=n / (0 = 6,)po (0]2™, y™) dp.




Furthermore, (7.4) is estimated by an information criterion

-2 Z Z; log pu (y¢|z:, z™ y(")) + 2tr(J,HY). (7.6)
t=1

In fact, the expectation of (7.6), if divided by 2n, is equal to (7.5) up to O(n™!) terms.

When g¢;(z) = go(z) and w(z) = 1, (7.6) reduces to the information criterion for the
Bayesian predictive density given in Konishi & Kitagawa (1996). Selection of w(z) as
well as selection of p(f) and p(y|z,8) becomes possible by minimizing (7.6). Comparing
the values of (5.1) and (7.6), we can also choose which to use from (7.1) and (7.3). In
this selection of predictive method, we may not have to calculate (7.3) explicitly, because
the difference between (5.1) and (7.6) would be obtained as a consistent estimate of the
second term of (7.5); this is computationally advantageous when w(z) = ¢,(x)/go(z) and
thus K[! = 0.

8 Geometrical interpretations

Geometrical interpretations of statistical methods are often helpful for a better under-
standing and further development. Here we attempt to give intuitive interpretations of
MWLE using the terminology of Efron (1978) and Amari (1985).

Let D be the space of all joint densities of (z,y). Each element r(z,y) € D is a
density function, and it is represented as a point in Fig. 3. For example, q(y|z)q(z) € D
is indicated as a point, which is the intersection of the two sets labeled ¢(y|z) and go(z).
The sets of densities in Fig. 3 have the obvious meanings as the labels indicate: g(y|z)
denotes {r(:x,y) €D|r(z,y)/([r(z,y)dy) = q(y|x)}, and g;(z) denotes {r(z,y) € D |
Jr(z,y) dy = ¢i(z)}. The manifolds (i.e. smooth sets) of model

{p(ylz,0)qi(z) € D | 0 € O} (8.1)

are shown as curves on ¢;(z) for : =0, 1.

The minimization of loss;(8) is equivalent to the minimization of the Kullback-Leibler
divergence of ¢(y|z)gi(z) from (8.1). This is represented as “projection” of the point
q(y|z)gi(z) to the manifold p(y|z, #)g;(z) in Fig. 3. The minimum is attained at 6}, and so
the projected point is p(y|z, 0} )q:(z). In general, 63 # 67, or equivalently p(y|z, 63)q:(x) #
p(ylz, 07)¢q:(z) in Fig. 3. This is because the metric structure is different in each foliation
of gi(z).

MLE 6, is known to be interpreted as the projection of the empirical distribution

> 6z —z)d(y — w)

t=1

3['—‘

10




to the manifold p(y|z,0)go(x). This is because —Lo(6)/n is regarded as the expectation
of — log p(y|x, §) with respect to go(z,y). Quite similarly, MWLE 6, is interpreted as the
projection of

w(z)do(z,y)/Cw (8.2)

to the model manifold. By using the weight w(z), the point gy(z,y) is “shifted” to (8.2).
Let ¢1(z,y) denote (8.2) with w(z) = ¢1(x)/qgo(x) as shown in Fig. 3. §(z, y) imitates the
empirical distribution that would be obtained from i.i.d. samples following q(y|z)q: ().
Note that ¢,(z,y) — q(y|z)q:(z) in distribution as n — oo.

We next consider an interpretation of the Bayesian predictive density. The decrease of
the expected loss of (7.3) from that of (7.1) is of order O(n™!) as shown in (7.5), which can
be positive or negative depending on ¢(y|z). For brevity sake, we assume ¢;(z) = go(z)
and w(z) = 1 below. Then the decrease in the expected loss is A/2n + o(n~!), where
A = (tr(GoHy ') — dim#). As shown in Fig. 4, A is determined by the extent of the
misspecification multiplied by the “embedding mixture curvature” of the model (S. Amari,
personal communication).

Bayesian predictive density g is a mixture of p(y|z, 6) around ,, and thus it is located
in the inside of the model because of the curvature; pp deviates from p of order O(n=1)
as shown in Davison (1986). Therefore, pp has larger expected loss than p if ¢(y|z) is
located in the outside of the model (i.e. A < 0), because pp is located in the opposite
side of g. This does not contradict with the classical result that the expected loss of pg
is asymptotically smaller than that of p for some prior. In Bayesian literature, the case
of correct specification (i.e. A = 0) is discussed and the difference of the expected loss is
of order O(n~2) as seen in Komaki (1996).

9 Concluding remarks

Although the ratio ¢;(z)/qo(z) has been assumed to be known, it is often estimated from
data in practice. Assuming q,(z) is known, we tried three possibilities in the numerical
example of Section 2: (i) go(z) is specified correctly without unknown parameters. (ii) As-
suming the normality of go(z), the unknown po and 7y are estimated. (iii) Non-parametric
kernel density estimation is applied to go(z). Then, it turns out that MWLE is robust
and the results are almost identical in the three cases. This may be because the form of
go(z) is quite simple and the sample size n = 100 is rather large.

A parametric approach to take account of estimation of ¢;(z)/qo(z) is considered as
follows. Let the observed data z;,, t = 1,...,n follow py(z|f), while future observations

will follow p,(z|@). Then a possible estimating equation will be

Zw(ztw)alog—pl(z"@ =0, (9.1)
t=1 89
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Figure 3: Schematic diagram of the space of joint densities of (z, y) in the sense of Amari
(1985); each point represents a Joint density of (z,y).

where w(z]60) = (p1(28)/po(2]8))*. The solution of (9.1) reduces to the MWLE discussed
in this paper by letting 2 = (z,y), po(218) = p(y|z, 6)go(z), and py(2[8) = p(ylz, 0)gi ().
The study along this line needs further consideration.

A numerical example of simultaneous selection of the weight and the model by the
information criterion is shown in Section 6. The information criterion takes account of the
selection bias caused by estimation of the parameter, but it does not take account of those
caused by the selection of weight and model. It is important to evaluate the expected
loss of the predictive density obtained after these selection. An extensive Monte-Carlo
simulation in Shimodaira (1997) indicates that the method presented in this paper is
effective, and the final expected loss of MWLE is smaller than that of MLE in most
situations.

We derived a variant of AIC for MWLE under covariate shift. On the other hand,
Shimodaira (1994) and Cavanaugh & Shumway (1998) discussed variants of AIC for MLE
in the presence of incomplete data. Information criteria have to be tailored for different
styles of sampling scheme, and the unified approach for them is left as a future work.
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Figure 4: The curvature of the model in relation to the location of the true density q. On
the parametric model denoted by p(-), we have A = 0, and |A| increases as q deviates
from p(-). The region of A > 0 is in the inside direction of the model, and A < 0 is in the
outside direction of the model. § denotes the empirical distribution, and the projection of
G to the model is the estimative density p = p(y|z, 8). pp denotes the Bayesian predictive
density.

A Appendix

Proof of Lemma 1. Since §;, is interior to ©, so is 6,, for sufficiently large n. Then, 6,

is obtained as a solution of the estimating equation

= Oly (T4, e6)
——== =0. Al
; 00 b (A1)
The Taylor expansion of (A.1) leads to

n 9%y, (x %Ly (2, y:|6) 1 Oly (x4, 1:]0) 1

-1 ts Yt ¥ -1 wiZts Ye -1
—0) = Twisty JelP) 1), 2
2000" ‘ R)=—nr ) =y, TOmT (A2)

t=1 w
It follows from the central limit theorem that the right hand side is asymptotically dis-
tributed as N(0,G,), while the left hand side converges to H,n2(f, — 6%). Thus we

obtained the desired result. ]

Proof of Lemma 2. The Taylor expansion of loss; (6,,) around 67, is
loss1 (87,) + {(K[‘]) 560 2(1{[21)1191 6 } +0,(n ), (A.3)

where é,,, = n%(éw — 62), and the summation convention A4;B' = 1 A;B? is used.
Considering Lemma 1, the expectation of (A.3) gives (4.1). By taking expectation of
(A.2), we observe b,, = O(1). 1

Proof of Lemma 3. Considering the Op(n“%) term in (A.2) explicitly, the Taylor expan-
sion of (A.1) gives
Ny 1 i Ol (ze, 1:|0)
v prrt a0

_1
+ N 26y,
0:

w
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where

1 o .
y (ew)i= _§(H§])ijk91]uaﬁ; + Op(n77).

ry 1 & Ply(x, 1e)0)
Hy=22 9006’

n t=1

ot

w

Noting H:™' = H;' — HY(H: — H,)H;' + 0,(nY), ntES™(6,,) is written as

1Plu(z,9160)| ;-1 0(z,y|0 ~1g(n -1
mo{t S, H G} H ) + 0,
which immediately implies (4.2). 1

Proof of Lemma 4. For any z, the conditional Kullback-Leibler loss

loss(f|z) = —/Q(y|$) log p(y|z, 0) dy

is minimized at 6* if ¢(y|z) = p(y|z,0*). Then 6;, = 6* for any w(z), because
Eo(lw(z,y]9)) = [ g(z)w(z)loss(f|x) dz. Thus loss;(8},) in (4.1) is equal for any w(zx).
Considering K[! = 0, the second term in (4.1) is written as

! (KPIQw) ' Q) Q(w) ™), (A4)

where K2 = Q(q1/g0) and Q(a) is defined for any a(z) by

a1 79 ol ,0
a2 hustlo

)

It it easy to verify that Q(w) !Q(w?)Q(w)™! — Q(1)~! is non-negative definite for any
w(z), and so (A.4) is minimized when w(z) = 1. ]
Proof of Theorem 1. The Taylor expansion of log p(y|z, §,) around 0, gives

dL.(0)
oo

nté, + LT L(0)
9:” v 2 80169] [}

Li(B) = L.(63) + %{

i} + Oy,

and thus ES” (=L, (,)/n) is expanded as

1 (n){laLl(G)

1
lossl(();,)—EEo —TT

néﬁ.w} + o tr(KPH- G, H') + O(n™?2) (A.5)

0
Considering —n~'0L,(6)/86}y, = K1) + O,,(n—'li), the second term of (A.5) becomes

1 1 1/ 10L,(0)
ity UL —E("){ 3 (________‘_‘ — (Kl )
an by + e 2 UL i o (I,')i ) x

w2 (1757, + o))

1 1, .
= ;Kl[j]'bw = ~HJ(Ju)i + O(n™%).

03

Combining this with (A.5) and (4.1) completes the proof. 1
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Proof of Lemma 5. Assuming certain regularity conditions similar to those of Johnson
(1970), we have the asymptotic limit of (7.2) is normal with mean 6, and covariance
matrix I:I,; !/n, since log p,(8|z(™, y™) is expanded as
1 ., PP A _1
—5n (6 — 0y,)' Hyn2(6 — 0y) + Op(n~z),

where terms independent of 6 are omitted. Then, (7.3) is asymptotically expanded as

5\, 1op(ylz,0)| . 1 (6"’p(ylx,9)
plylz, Ou) + ~—27 Gy + o5 U\ — 5400

by, 2n

. ff,;l) + 0p(n7). (A.6)
Ow
Note that Dunsmore (1976) gave the unweighted version of (A.6) when the model specifi-
cation is correct, but the term of @,, was missing as indicated by Komaki (1996). Applying

the identity
1 0’p _ Ologpdlogp , 0%logp

pdode — 80 oo 8000’
to the third term of (A.6), we obtain

) o) 19logp(y|z,9)

n 5 1 0 logp(y|z,0)
logPuI(ylxax( 7y ) = logp(ylx)ew)+n 89’ tr{(—'_‘o

o U 2n 0

6° log p(y|z, 0) ) _1} -1
" 5090 |y, ) oD (A

0log p(ylz, 0)
oo’

Thus (7.5) immediately follows from (A.7). The last statement of the lemma is verified
by combining (A.7) with Theorem 1. I
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