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Abstract

A graphical method is presented for understanding the relations among
the parametric models with respect to data. The models are represented
by their predictive densities, and they are drawn in Euclidean space pre-
serving approximately the symmetrized divergence between these densities.
This direct visualization of models is very simple and useful for diagnosis
of the model selection, especially for nonnested models. Problems such as
overparametrization or misspecification of the models are identified from
the configuration of the points. Structural patterns in good models are also
found as clusters. This is complementary to the methods for assessing the
uncertainty of model selection; a brief review is given for the confidence
set of models derived from the variance of log-likelihood differences, the
bootstrap selection probability, and the simultancous likelihood ratio test.
Iluminating examples from the variable selection in multiple regression as
well as practical examples from the phylogeny tree reconstruction are given
to illustrate the methodology.

Keywords: Akaike information criterion, graphical exploratory method,
Kullback-Leibler divergence, nonnested models, phylogenetic inference,

variable selection.



of the points approximately proportional to the symmetrized Kullback-Leibler di-
vergence. This method is quite simple and has a wide range of applicability. In
this paper, only the i.i.d. case is treated, but the time series of AR model, for
example, can be treated similarly by considei'ing the innovation series.

In Section 2, we give the specific definition of the model map, and show the
relationship to the divergence. In Section 3, we review the methods assessing the
uncertainty of model selection. However, a large part of the description of the
methodology is given in examples of Section 4 step by step from the simplest case
to practical cases. We explain how the model map is used by giving illuminating
examples from the variable selection problem of multiple regression using datasets
taken from textbooks. We also show practical examples from the evolutionary tree
reconstruction in phylogeny, where the origin of hominoids and the origin of the
tetrapods are discussed. Some remarks are given in Section 5.

2 Model map

Let g(z) be the unknown true density of random variable z, and z;, ..., z, be ii.d.
observations of sample size n from g(z). Consider the situation that we have a set
of candidate probabilistic models p,(z|0.), @ € M, where a indexes models, M is
the candidate set, and 8, € ©, is the parameter vector. We assume p,(z|f,) has
the same support in = as ¢(z) does. However, we do not assume the existence of
a correctly specified model in the candidate set.

The predictive density of model « is pa(xléa), where 6, is an estimated pa-
rameter vector. In the examples of Section 3, 6, is the maximum likelihood
estimate (MLE), that is, the maximizer of the log-likelihood function L4(6,) =
> =1 10g pa(z¢|0s), but it is not required for the model map.

The definition of the model map for the predictive densities p, (xléa), ae M
is quite simple: Let the position of model « in n-dimensional Euclidean space be

given by the column vector
o = (logpa(zi|fs) : t=1,...,n). (1)

Each model, or its predictive density, is represented as a point in R™. The max-
imum log-likelihood is obtained by projecting &, to 1, = (1,...,1)" direction,
Lo(8s) = 1.€,. The model map represents the relative positions of the predictive
densities in all the directions, not just in the 1,, direction. To draw the model map,
we project the points £,, @ € M into a lower dimensional space, say R? or R?,
using the principal component analysis.




We interpret the model map based on the following property of the Jeffrey
symmetric divergence of densities:

I:(); pa()) ~ [ g(a)(log pr(z) - logpa(a))?d, @

where the densities p1(z) and pe(z) are assumed to be close enough to ¢(z), and
the symmetric divergence J(p;(-); p2(-)) is defined by

[#1(@) = p2(2)) (108 11 () ~ og p2(a)) d 3)

A detailed discussion is deferred to Appendix, but just notice that p,(z) — ps(z) =
g(z)(log p1(z) — log p2(z)) to derive (2) from (3). .

Applying the relation (2) to the predictive densities, and considering that
Zy,...,Tn are independent samples from ¢(z), we have

l€a — &1I* = nJ (Pa(-|0a); Ps(-|05))- (4)

In other words, the squared distance of two points in the model map is approxi-
mately proportional to the symmetric divergence of the two predictive densities.
However, we should remember that the model map is distorted in the following
reasons: (i) We have to project the points into a lower dimensional space to draw
them for the visualization. (ii) The relation (4) holds only when the predictive
densities are close enough to the unknown true density. (iii) Because the symmet-
ric divergence does not form a metric space, any attempt to represent the whole
space of densities in a finite dimensional Euclidean space may fail.

3 Uncertainty of model selection

Although the main subject of this paper is the model map, we briefly review AIC
and other related statistics for assessing the uncertainty of model selection. These
statistics are tabulated for datasets of Section 4.

The information criterion of Akaike (1974) of model « is

AIC, := —2Lo(0,) + 2dim . (5)

AIC is an unbiased estimate (up to the second term) of the expected prediction
error, which is the average of —2 [ ¢(z) log p(z|6,) dz taken over the distribution
of 8, = éa. Often chosen as the “best model” is the minimum AIC estimate
(MAICE), the minimizer of AIC.

However, the difference of AIC values may not be significant, and the other
models would be better than MAICE in their average performance. We think
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model a is significantly better/worse than model 8 if AIC, is significantly
smaller/larger than AICs. Linhart (1988) and Vuong (1989) considered a nor-
mal approximation test using the standardized difference

AIC, — AIC
Ta,ﬂ = _%3:;__3.’ (6)
h
where 2 n s 1., , 2 1
0(!,/3 = n— 1 (”6‘1 - gﬁ” - ;’:(lnga - 1nEﬂ) ) + Eva’ﬂ (7)

is an estimate of var(L,(6a) — Lg(s)). The higher order term Vo, = dim b, +
dim 63 — 2dim(pe(-) Nps(-)) is introduced in Shimodaira (1997a, 1998).

The confidence set consists of those models which are not significantly worse
than MAICE, or the models whose p-values are larger than the significance level.
The p-value of each model is P{¥) := 1 — &(T, maicg), Where ®(:) is the standard
normal distribution function. Since Kishino and Hasegawa (1989), this method
has been used in phylogeny tree reconstruction, and proved useful in practice.

PM) is another p-value given in Shimodaira (1993, 1998) using a variant of
Gupta’s subset selection procedure. This is similar to P{L), but each model is
compared with the minimizer of the expectation of AIC rather than MAICE. The
randomness of MAICE is taken into account in P{M), while MAICE is regarded
as fixed in P{L),

P{®) is an estimate of the probability for each model to be selected as MAICE;
the bootstrap estimate has been used in phylogeny since Felsenstein (1985). This is
not a p-value based on hypothesis testing, but it is very useful in practice. Rather
the straightforward bootstrap, we employed the normal approximation of Kishino
et al. (1990); P{M) is also calculated from the same bootstrap samples.

P{5) is the p-value of LR test, which is also useful when we have the full model,
in which all the candidates are nested. Each model is separately tested against
the full model, and the non-rejected models are identified as the adequate models.
For simultaneous testing, all those models, in which any non-rejected models are
nested, are automatically included in the set of adequate models; this closure
method is discussed in Spj¢tvoll (1977).

Note that these four types of p-values are calculated from the log-likelihood
vectors (1) of the candidate models.




4 Numerical examples

4.1 . Variable selection in multiple regression

The variable selection is a typical example of model selection. We describe the
model below, and illustrate the model map with three datasets taken from text-
books.

Let = be partitioned as (y, z), where y is the response variable and z =
(21,-..,2m) is the vector of the predictors. The normal regression model spec-
ifies the conditional density of y; given z2; as

Ye="o+M21e+  + TmZme + €, (8)

where ¢;, t = 1,...,n, are distributed as normal with mean zero and variance ¢2.
The MLE of 8 = (o, 70,7, ---,7m) is obtained by the least square method, and
62 = Y1, € /n, where ¢ is the residual under the model. The position of the
model (8) is given by

a 1 R 62
log p(ys2t,0) = —-2-(10g(21r02) + 5%) (9)

We can ignore log p(z;) term, because it just moves the origin.

The full model, which uses all the predictor variables 2y, . .., z,,, may not lead to
the best experimental formula for prediction. A better prediction will be obtained
if good predictors, which are strongly related to the response variable y, are picked
out for estimation of the coefficients 7; and the others are set to zero. This is an
example of model selection; a subset of predictors corresponds to a model.

4.1.1 Case I: Weight of newborn baby

This dataset is taken from Sawa (1979, p. 57). The response variable is the weight
of a newborn baby. The four predictor variables are the weight of the baby’s
mother (z;), the age of the mother (z;), the number of days of the pregnancy
(23), and a dummy variable indicating whether the mother is a habitual smoker or
not (z4). These predictors are labeled as a, b, ¢, and d, respectively, and each
submodel is denoted by those letters in angle brackets. We consider all possible
21 = 16 combinations of the predictors as the candidate models for selection. The
sample size is n = 15.

Figure 1 is the model map drawn for the sixteen candidate models. The points
€ay @ € M are given in R" by calculating (9) for all the submodels, and then they
are projected to the three major principal component vectors u;, ¢ = 1,2,3: Let
uy,...,up and A2 > --- > A2 > 0 be the unit eigen vectors and eigen values of the
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Table 1: AIC and p-values for Case I. Models are ranked by their AIC values.
Only the difference of AIC from MAICE is shown for models other than MAICE.
The four types of p-values are explained in Section 3: P{L) is p-value of Linhart’s
model selection test. P{™) is p-value of the multiple comparison method. P{?
is the bootstrap selection probability. Pc(!s) is p-value of LR test. The bootstrap
replicate size is N, = 10* for P{*) and P{P).

@ AlC, PV pM  piB  pls)
1  <abcd> 200 0.500 0.982 0458 -
2 <abc>  +1.49 0.362 0.699 0.337 0.062
3 <acd>  +4.58 0.099 0.346 0.063 0.010
4 <ac>  +7.18 0.077 0.299 0.020 0.004
5 <abd>  +8.07 0.119 0.365 0.081 0.002
6 <ab>  +8.12 0.078 0.363 0.015 0.002
7 <ad>  +8.74 0.082 0.333 0.022 0.002
8 <a> +9.86 0.046 0.257 0.005 0.001
9 < +23.60 0.000 0.003 0.000 0.000
10 <d>  +24.63 0.000 0.000 0.000 0.000
11 <c>  +25.37 0.000 0.001 0.000 0.000
12 <b> 42558 0.000 0.000 0.000 0.000
13 <cd>  +26.38 0.000 0.000 0.000 0.000
14 <bd>  +26.47 0.000 0.000 0.000 0.000
15 <bc>  +27.36 0.000 0.000 0.000 0.000
16  <bcd>  +28.23 0.000 0.000 0.000 0.000




Figure 1: Model map for the candidate models in Case I. The segments indicate the
model structure. The major three principal components are used for the drawing;
the cumulative contribution ratio (CCR) = 0.94. The two major components are
represented by the small points on the bottom. The origin is moved to the center of
gravity of the points. The gray-level of points is proportional to the log-likelihood
value; light gray means smaller value, and dark gray means larger value.

n X n matrix 3 ,e pm(€a — &0)(€a — &o)’, where M = | M| and & = Y per éa/M. In
the model map, the i-th axis (S-¢) denotes the principal component u} (£, — &) for
each o € M. The contribution ratio of the axis is A}/ 32, A%, and the cumulative
contribution ratio (CCR) of the three axes is Y3_, A?/ Zjl‘il A2, In this case, CCR
= 0.94, which is large enough to carry the features in most aspects. Note that we
calculate u;’s directly from £,’s by the singular value decomposition in practice.

The eight models which do not include the predictor 2; are found as a cluster
of light gray points, indicating small values of log-likelihood. On the other side of
S-1, the eight models which include z; are found as dark gray points, indicating
large values of log-likelihood. These eight models are placed approximately on the
vertices of a slightly warped cube, representing the simple structure of the boolean
lattice formed by inclusion of the other three predictors. The shape implies the
three predictors 23, 2, and z4 have about the same size and slightly correlated
explanation power on the response y given z;.

The same pattern of clusters is also found in Table 1, which shows AIC and
the four different types of p-values for the candidate models ranked by their AIC
values. We see the clear jump of AIC values from <a> to <>, which divides the
candidates into two parts corresponding to the two clusters found in the model




map. The cluster of good models is also identified as a confidence set of models
using P{™) at, say, level = 0.1, while P{") implies a smaller confidence set. P{5)
implies the same confidence set as P{"), if models with smaller values of P{) are
eliminated until the sum of them becomes 0.1.

MAICE is <abcd>, the full model. All the other submodels are rejected by
P(5) at the level = 0.1. This result of LR test may also be seen in the model map;
the points of the submodels are far enough from the full model for their rejection.
This interpretation is based on

1€a = &1I> ~ 2La(6a) — 2L4(65), (10)

which holds if model § is nested in model «, denoted as pg(-) C pa(-), and if their
predictive densities are close enough to g(z). This is derived from (4), by the
Taylor expansion of L, (6,) around f,.

4.1.2 Case II: Heat evolved from cement

This dataset is taken from Draper and Smith (1981, p. 629). The response variable
is heat evolved in calories per gram of cement, and the four predictor variables are
the amounts of four major ingredients in percentage. M consists of 2¢ = 16
models. The sample size is n = 13.

Figure 2: Model map for the candidate models in Case II. CCR = 0.94. A cluster
of good models is found in the right side of the map.

The model map is shown in Figure 2. The pattern of points is quite different
from that of the previous dataset. A cluster of good seven models is identified

8




Table 2: AIC and p-values for Case II.

a Aalc, pY PM pYP pY

1 <abd> 64 0.500 0.972 0.180 0.863
2 <abc> +0.04 0.493 0.938 0.256 0.796
3 <ab> +0.45 0.438 0.911 0.255 0.290
4 <acd> +0.75 0.382 0.924 0.158 0.376
5 <abcd> +1.97 0.088 0.451 0.002 -

6 <ad> +3.77 0.169 0.540 0.094 0.055
7 <bcd> +5.60 0.136 0.353 0.052 0.018
8 <cd> +14.88 0.019 0.074 0.004 0.000
9 <bc> +26.06 0.001 0.000 0.000 0.000
10 <d> +33.88 0.000 0.000 0.000 0.000
11 <b> +34.20 0.000 0.000 0.000 0.000
12 <bd> +35.66 0.000 0.000 0.000 0.000
13 <a> +38.55 0.000 0.000 0.000 0.000
14 <ac> +40.14 0.000 0.000 0.000 0.000
15 <c> +44.09 0.000 0.000 0.000 0.000
16 < +46.47 0.000 0.000 0.000 0.000

clearly, in which all the four submodels with three predictors are included. Espe-
cially, <abd> and <abc> are almost indistinguishable from the full model <abcd>.
The same cluster is also confirmed in Table 2.

This degenerate shape is a result of the multicollinearity; the sum of the four
predictors is approximately a constant in this dataset. Thus any set of three
predictors works mostly fine as the full model for the given dataset. This over-
parametrization is easily identified in the model map.

4.1.3 Case III: Housing price in Boston

This dataset is taken from Belsley et al. (1980, p. 244); the computer file is down-
loaded from StatLib Datasets Archive and some variables are transformed. The
response variable is the logarithm of the median value of owner-occupied homes
for each area in Boston. There are thirteen predictor variables z; to z;3, which are
labeled as a tom. For example, z; (= a) is per capita crime rate by town, z; (= f)
is average number of rooms per dwelling, 2z1; (= k) is pupil-teacher ratio by town,
and z;3 (= m) is logarithm of the proportion of the population that is lower status.
The sample size is n = 506. We consider 286 candidates that contain three of the

thirteen predictors.
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Figure 3: The models which include z;3 are drawn in R3 for Case III. The full
model is labeled as X. CCR = 0.72.

Table 3: AIC and p-values for the best 20 models ranked by AIC in Case III.

o AIC, PB p™M pB  p)

1 <afm> -156  0.500 0.994 0.487 0.000
2 <akm> +1.72 0.461 0.986 0.381 0.000
3 <ahm> +18.67 0.180 0.774 0.069 0.000
4 <agm> +24.76 0.098 0.559 0.006 0.000
5 <adm> +25.32 0.110 0.570 0.016 0.000
6 <alm> +32.26 0.055 0.256 0.002 0.000
7 <ajm> +35.31 0.028 0.061 0.000 0.000
8 <abm> +38.42 0.020 0.122 0.000 0.000
9 <aim> +39.51 0.016 0.104 0.000 0.000
10 <acm> +40.72 0.013 0.040 0.000 0.000
11 <aem> +40.94 0.013 0.048 0.000 0.000
12 <klm> +46.86 0.079 0.441 0.022 0.000
13 <fjm> +48.73 0.019 0.280 0.005 0.000
14 <jkm> +53.99 0.028 0.140 0.000 0.000
15 <fkm> +54.11 0.023 0.331 0.004 0.000
16 <flm> +59.78 0.027 0.299 0.006 0.000
17 <hjm>  +60.70 0.023 0.227 0.002 0.000
18 <dkm> +62.01 0.023 0.177 0.001 0.000
19 <bkm>  +62.69 0.018 0.148 0.000 0.000
20 <ekm> +64.75 0.013 0.078 0.000 0.000
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From a simple plot of La(éa), a € M, we find that 66 models which include
213 form a cluster of good models. Figure 3 shows the model map for them.
Additionally, we drew the other 13 submodels with one or two predictors, as well
as the full model labeled as X. |

<afm> and <akm> are relatively close to X. The other nine models that include
z1 and 23 form a cluster, and <am> is located at the center of the cluster. These
models are the best 11 models in terms of AIC as shown in Table 3. The model map
implies that the best two models show distinctively good predictive performances,
but the other nine models show a next best performance similar to each other.

The five models ranked from 12 to 16, namely, <klm> to <flm>, are easily
identified as isolated points in the model map. These models have relatively high
PP values, larger than some of the best 11 models. In other words, T}, maicE
is relatively small for them. This result can be read in the model map; these
models are far from <afm> and the differences of their AIC values from MAICE
are regarded as uncertain. This interpretation is based on

&a,ﬁ ~ ”601 - fﬂ”Z, (11)

which is derived from (7) by ignoring the higher order terms.

Note that P{5) = 0.000 for all o € M; all the candidate models are very far
from the full model. It is often the case that the set of adequate models is empty
if the full model is not a member of M. The methods of Section 3 other than P{5)
are appropriate in such a case. On the other hand, Pgs) is often appropriate if the
full model is a member of M. The model selection tests (P{) and P{M)) are very

conservative for nested models as discussed in Shimodaira (1997a).

4.2 Evolutionary tree reconstruction in phylogeny

The branching order (i.e. topology) of evolutionary tree is inferred from the genetic
information (i.e. molecular sequences) of contemporary species. This is another
example of model selection. Given the topology of the tree, the nucleotide or the
amino acid substitution is modeled as the time reversible Markov process along
the genealogy; it is a probabilistic model with the parameters of the substitution
process and the edge lengths of the tree measured by the expected number of sub-
stitutions. Until now, many such schemes have been proposed in the literature for
the substitution process, and the parameters and the topology have been estimated
by the maximum likelihood principle since Felsenstein (1981, 1983). Because the
direction of the evolution is not specified in the model, the root of the tree must
be inferred by using an outgroup species; such as paleontological evidence clearly
indicates that it has branched off earlier than the other taxa under study.
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The dataset consists of aligned molecular sequences of n sites for s species. Let
the status of species i at site t be z;;, € A, i=1,...,s5,t =1,...,n, where A =
{A, T, G, C} for nucleotide sequences, or .A consists of 20 amino acid code letters
for protein sequences. We assume the substitution process is independent and
identical for every site, and the dataset is regarded as an outcome of a submodel
of the multinomial distribution of n trials with |A|* categories (Efron et al., 1996).

Table 4: Ten splits of five groups. Each split corresponds to the internal edge

which separates the groups.
= {G1,G2,G3|G4,Gs}

{G1,G3,G4|G2, G5}
= {G2,G3,G4|G1,Gs}
{G1,G2,G4|G3,Gs}
= {G1,G2|G3,G4,Gs}
= {G3,G4|G1,G2,Gs}
{G2,G4|G1, G3,Gs}
= {G1,G;|G2, Gy, Gs}
{G2,G3|G1, G4, Gs}
i = {G1,G4|G2,G3,Gs}

5 0| o0 A0 o e
I Il !

e
I

In the examples below, we consider m = 5 groups of species, § =
{G1,G2,G3,G4,G5}.  The number of unrooted tree topologies is M =
(2m - 5)!/(2™=3(m — 3)!) = 15. Selection of a topology is essentially the same
as the selection of a set of predictors in Section 4.1; each topology is uniquely
specified by a combination of splits, which are partitions of G into two parts. (See
Table 4.) For example, the topology ((G1, (Gs, G3)),G4) given in Figure 4 is de-
noted by <ai>. The number of splits is B = 2™~! — (m + 1) = 10, and each
bifurcating tree consists of N = m — 3 = 2 splits. Not all the combinations of
N splits out of the B splits are allowed to construct trees. Denoting z° = G \ «,
for two splits {z|z°} and {y|y°} to construct a tree, one of zNy, z°Ny, £NY", or
z°(y° must be the empty set. This constraint makes the algebraic structure of
tree topologies much interesting than the usual variable selection.

4.2.1 Case IV: Mitochondrial nucleotide sequences of primates

The code table of DNA is redundant, because 43 = 64 codons, triplets of nu-
cleotides, are translated into 20 amino acids. The third position of codon often
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G2 <bf§efzae> Ga (©)

Figure 4: (a) The bifurcating topology <ai>; (b) the multifurcating topology <i>.
They are denoted by ((Gy, (G2,G3)),Gs) and (Gy, (G2, G3), G4) respectively, as-
suming G is the outgroup. <ai> reduces to <i> if the internal edge length cor-
responding to a is zero. Similarly, <i> reduces to the star topology <> if the
internal edge i is zero. (c) The five bifurcating topologies and the two multifur-
cating topologies, which are associated with the split {G;, G2|G3, G4}. The arrows
indicate where G5 stick to.

does not affect the amino acid, and so carries the information of the genetic di-
versity; those n = 1669 four-fold degenerate sites for s = 5 primates are extracted
from the dataset of Horai et al. (1995). See Adachi and Hasegawa (1996) for de-
tails of the dataset and the Markov models used in the analysis. We are interested
in the branching order of G; = Human, G3 = Chimpanzee, G3 = Bonobo, G4 =
Gorilla, and G5 = Orangutan; G5 is the outgroup here.

Table 5 shows that the topology <ai> is significantly better than the others
in terms of P{¥) and P{®), while P{M) suggests the conventional topologies <ci>
and <ij> are on the border of rejection at 5% level. Anyway, these conventional
topologies reduce to the multifurcating topology <i>, because their MLE’s imply
that the internal edge lengths corresponding to the splits ¢ and j are zero. This
result agrees with that of Hasegawa and Yano (1984), Sibley and Ahlquist (1984)
and Bar-Hen and Kishino (1998). We employed HKY model of Hasegawa et al.
(1985) for the substitution process, in which some symmetricity is assumed and
one parameter for the process plus three parameters for the base compositions are
estimated from data. All the parameters including the edge lengths are estimated
by the program package MOLPHY of Adachi and Hasegawa (1995), which gener-
ates the the site-wise log-likelihood (1). The result is almost the same even if we
use another substitution process, called TN model of Tamura and Nei (1993), in
which an additional parameter is estimated from data.
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Table 5: AIC and p-values for the bifurcating tree topologies of primates. Some
topologies are degenerated to multifurcating topologies, because the internal edge
lengths are restricted to be non-negative: <ci> and <ij> to <i>, <ae> and <ah>
to <a>. The slight difference of PM) and P{? for them is due to the bootstrap
sampling error.

a Alc, pPE pM o pB)

1 <ai> 11352  0.500 1.000 0.983
2 <ci> +28.32 0.011 0.049 0.006
3 <ij> +28.32 0.011 0.052 0.007
4 <ae> +50.65 0.004 0.019 0.002
5 <ah> +50.65 0.004 0.020 0.002
6 <bj> +66.67 0.000 0.002 0.000
7 <dj> +67.59 0.000 0.001 0.000
8 <cf> +90.70  0.000 0.001 0.000
9 <cg> +91.31 0.000 0.001 0.000
10 <bf> +100.86 0.000 0.002 0.000
11 <ef> +101.46 0.000 0.002 0.000
12 <bh> +101.61 0.000 0.002 0.000
13 <dg> +102.25 0.000 0.002 0.000
14 <gh> +102.26 0.000 0.002 0.000
15 <de> +102.37 0.000 0.002 0.000
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Figure 5: (a) Model map for the 15 bifurcating topologies of primates as well as
their submodels (multifurcating topologies). Most of the topologies are almost
degenerated to the submodels, and the labels are given only for non-degenerated
models. Not only HKY model, but also TN model is considered for the substitution
process; the factor k denotes the additional parameter for TN model. The points
for the topologies estimated under TN model are placed in parallel with those for
HKY model. The observed data is indicated by the point XX, which is obtained
from the non-restricted multinomial distribution. The principal component vectors
are calculated from all the points in the map. CCR = 0.97. (b) Model map for
the topologies under HKY model. CCR = 0.98. The principal component vectors
are calculated from all the points but XX. These points span a hyperplane, and XX
is projected to it as indicated by X. Here X is very close to <ai>.
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Figure 5 shows the model maps. In Panel (a), we drew the points for both
of HKY model and TN model. The point XX is the predictive density obtained
under the non-restricted multinomial distribution. The degenerated topologies are
indistinguishable from their submodels in the map. All the points are very far from
the data point XX as similar to Case III; actually, Adachi and Hasegawa (1996)
showed <ai> and <aik> are rejected by a goodness-of-fit test.

On the other hand, X is very close to <ai> in Panel (b), suggesting the fitting of
<ai> is very good in the “full model” as explained below. Here the model map is
once drawn using the points of topologies (including the multifurcating ones), then
the data point XX is projected to the principal component vectors u;, i = 1,2, 3,
and labeled as X. This configuration of the points appears to be robust, because
almost the same configuration is obtained if we use the points of TN model rather
than HKY model. X is approximately regarded as the predictive density of the
full model; it is the minimal model containing all the non-degenerated topologies,
which is uniquely specified by the local linearization around the star topology <>
(Shimodaira, 1997b). The non-restricted multinomial distribution also contains all
those topologies, but it is unnecessarily large and includes redundant dimensions
to compare the topologies each other.

The model map leads to tests of the topologies against the full model. One
possibility is to apply the simultaneous confidence region test; topologies are re-
jected if they are outside of the confidence sphere of radius /x3;_ .. centered
at X. The p-value of <ai> is 0.54, and those for the other topologies are less than
10~°. Another possibility is to apply an approximate version of the LR test. For
example, the dimension of <ai> relative to <> is two, and so the test statistic

o1 (W (€<ai> — &))? is approximately distributed as x2_,. We should consider
the model map in R* (CCR = 0.99) for this test, since the four non-degenerated
bases <a>, <i>, <j>, and <c> span the full model around <>. The p-value of <ai>
drops to 0.039, and those for the others are less than 107!° where the segments
are long enough to allow us to ignore the non-negative boundary of edge length. In
either case, <ai> is the only topology which cannot be rejected clearly. Note that
these tests are difficult to obtain without resorting to the model map approach,
because the full model does not give a tree topology but a web topology of species,

and its construction is not obvious.

4.2.2 C(Case V: Mitochondrial protein sequences of vertebrates

The third position of codon is quickly randomized and the information about the
topology is lost for distantly related species. Thus we show another example by
using protein sequences dataset of n = 3274 sites for s = 22 species to solve the
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debate of the origin of tetrapods: G; = Tetrapods (15 species), G, = Lungfish,
G3 = Coelacanth, and G4 = Ray-finned fish (4 species). The outgroup is G5 =
Lamprey. The parameters are estimated by the program package PAML of Yang
(1997). The transition rate matrix of the substitution process is obtained empir-
ically from 20 mammalian species. See Cao (1998) and Cao et al. (1998) for the
details of the dataset.

Table 6: AIC and p-values for the bifurcating tree topologies of vertebrates. The
substitution rate is assumed to be the same for all the sites.

a AIc, P P PP

1 <bf> 113877 0.500 1.000 0.953
2 <cf> +80.82 0.023 0.120 0.021
3 <bj> +85.98 0.022 0.114 0.020
4 <bh>  +124.82 0.000 0.003 0.000
5 <ef> +139.41 0.000 0.000 0.000
6 <ci> +141.73 0.010 0.062 0.006
7 <cg> +195.38 0.000 0.002 0.000
8 <de>  +223.18 0.000 0.000 0.000
9 <ij> +231.38 0.000 0.001 0.000
10 <dj> +232.40 0.000 0.001 0.000
11 <ai> +242.50 0.000 0.000 0.000
12 <ae>  +253.26 0.000 0.000 0.000
13 <dg> +267.05 0.000 0.000 0.000
14 <ah> +303.83 0.000 0.000 0.000
15 <gh> +313.46 0.000 0.000 0.000

Table 6 shows that the topology <bf> is significantly better than the others,
while only P{™) implies the possibility of <cf> or <bj> being the best topology.
These topologies are inconsistent with the conventional idea that G4 is the out-
group of {G1,G,,G3}. The conventional topologies <ae> = (((G1, Ga2), G3), G4),
<ah> = (((G1,G3), Ga), Gy), and <ai> = (((G3, G3), G:1), G4) are rejected clearly
by all the statistics. Despite this surprising result, a warning is given in the model
maps of Figure 6. Panel (a) shows that all the topologies are very far from the
full model X, though <bf> is relatively close to X; all the topologies are rejected
against the full model. This suggests the substitution process is misspecified sig-
nificantly even for resolving the topologies. The situation is different from Case
IV, because the substitution process was misspecified also there (XX was far from
the topologies), but the fitting of one of the topologies was quite nice in the full
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Figure 6: (a) Model map of the vertebrates drawn for the 15 bifurcating topologies
and 11 multifurcating topologies. CCR = 0.72. X denotes the full model spanned
by the 10 splits around the star topology <>. (b) Among-site rate variation is
modeled by the gamma distribution. CCR = 0.77. (c) Model map drawn for the
topologies including the split c. The full model is spanned by the three splits f,
g, and i around the model <c>. CCR = 1. (d) The seven topologies in Panel (c)
of Figure 4. The full model is spanned by the 6 splits a, b, ¢, d, e, and f around
the star topology. CCR = 0.90.
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Table 7: AIC and p-values for the bifurcating tree topologies of vertebrates.
Among-site rate variation is modeled by the gamma distribution.

o AIC, PD pi p®

1 <cf> 104790 0.500 0.946 0.516
2 <bf> +546 0.385 0.794 0.354
3 <ci> +23.83 0.135 0.443 0.108
4 <ef> +26.31 0.036 0.178 0.002
5 <cg> +44.41 0.007 0.041 0.000
6 <bj> +45.73 0.074 0.226 0.015
7 <de> +55.19 0.015 0.103 0.002
8 <bh> +60.76 0.018 0.032 0.000
9 <ij> +62.76 0.022 0.145 0.001
10 <dj> +64.17 0.020 0.132 0.001
11 <ae> +64.40 0.004 0.036 0.000
12 <ai> +68.56 0.012 0.078 0.000
13 <dg> +78.18 0.003 0.027 0.000
14 <ah> +88.12 0.001 0.008 0.000
15 <gh> +90.82 0.000 0.004 0.000
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model (X was close to <ai>).

Yang (1996) discussed that the relative substitution rates among sites can be
modeled by the gamma distribution. We reanalyzed the vertebrates data with this
substitution model, in which an additional gamma-shape parameter is estimated.
Table 7 shows that the fitting was improved significantly compared with the con-
stant rate model; the difference of AIC values is 9 x 103. However, it turned out
that AIC differences among the topologies decreased and the uncertainty became
large. The scales of the axes in Panel (b) are reduced about half of Panel (a),
while the relative positions of the topologies are not very different. This implies
that the introduction of the gamma distribution did not effect the model in terms
of resolving the topologies; but it eliminated the spurious significance by reduc-
ing the effective sequence size. The configuration of the points implies that the
uncertainty came from the misspecification (as in Case III) rather than the over-
parametrization (as in Case II). The two model maps give us warning that the
substitution process still needs to be improved.

Panel (c) is the model map to resolve the conventional three hypotheses as-
sociated with the splits {G1, G2|G3, G4} (= e, £), {G1,G3|G2,G4} (= g, h), and
{G2,G3|G1,G4} (= 1, j). <cf>, <cg>, and <ci>, respectively, are representa-
tives for them taken from the good models of Table 7. The model map suggests
{G1,G2|G3,G,} is better than the others, but it is dubious because of the mis-
specification.

In the conventional hypotheses, G4 is assumed to constitute the outgroup with
Gs, but it is rejected in the analysis above. Panel (d) shows the possible roots of the
four groups assuming the split {G1, G2|G3, G4} is true. <ef> is very close to <f>,
which implies the root should be very close to the node separating G; and G, under
<ef>; it follows from (10) that the distance ||€<s> — &<er>|| = 1.11 approximates
the estimated edge length divided by its standard error. <cf>, <bf>, and <ef>
are the most likely topologies. But it does not mean the multifurcating topology
<f> is supported by them. [[{<t> — €cce>|| = 5.46 and [|€css — Ecpes|| = 4.45 are
rather large and their corresponding edge lengths are significantly larger than zero.
Obviously <cf> and <bf> are inconsistent, which came from the misspecification

shown in the model maps.

5 Concluding remarks

In Case V, the full model X is calculated without using XX. According to (10),

K,2
"2"”&' - fc“2 ~ 1;,(&1 - fc) (12)
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holds for o € M, where x = 1, and c is the model nested in all the other models
(i.e. the star topology). Because of the distortion, however, (12) holds nicely with
k = 0.72 for Panel (a) of Figure 6, or k = 0.79 for Panel (b). The deviation of
from unity implies that XX is too far from the models, and X may not be obtained
properly by the projection of it. Thus, we calculated & such that

2
7”& — &l* = 1, (& — &) (13)

holds for & € M with k obtained from (12). In the model maps of Case V, we
rescaled the axes by the factor « for the calibration. This technique is useful to
calculate approximately the composite model spanned by a given set of models.
The model map approach to the approximate LR test against the comprehen-
sive model is presented in Case IV. The idea is similar to the Lagrange multiplier
test based on the artificial regression of Davidson and MacKinnon (1987) in which
the score vectors are used rather than the log-likelihood vectors of (1). Both of the
approaches make use of the local linearization, and give a similar result if the full
model] is not very far from the null model. Our approach is practically advanta-
geous if existing program packages output only the log-likelihood vectors but the

score vectors.
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Appendix

Consider a family of densities parameterized by ¢ = (¢!, ¢?) € R? such that the
three densities g(z), p;(z), and pa(z) are included in it. For example,

p(z]¢) = exp((1 — ¢' — ¢*) log g(z) + ¢' log p(z) + ¢* log pa(z) — c(9)),

where c(¢) is defined by [ p(z|¢) dz = 1. In the following, | denotes log p.
Let ¢, and ¢ be two distinct parameter values of ¢. Using Taylor expansion
of [(z|¢p) around ¢, and that of p(z|0,0) = q(z), we have

p(z]0,0)(U(z(da) — U(z]¢p))
= (p(z]¢a) + Op(lI¢al)(3_ Oil(x|6a) (¢ — 85) + Op(llda — 851I*))
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= ) _p(z]6)0il(z|6a) (8 — ) + Op((l|8all + l18sl1)I¢a — 85l1)
= P(zl¢a) = p(zI¢5) + Op((liell + lsl)IIga — d5ll),

where 8; = 8/0¢'. In the last equation, p('),-l‘z 0;p was used. Therefore,

[ 4@)(Uzlga) - Uzldp))* da
= [(p(alga) - p(z18)) ((z18a) ~ U(z|g)) da
+O((l1gall + 1¢slDlIda — d5I%)
= (14 X)J(p(1¢a); p(18p)),

where A = O(1/J(q(); p(¢a)) + v/ J(a(-); p(|¢5)) ). Finally put ¢o = (1,0) and
#s = (0,1) to obtain (2).
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Abstract

A graphical method is presented for understanding the relations among the para-
metric models with respect to data. The models are represented by their predictive
densities, and they are drawn in Euclidean space preserving approximately the sym-
metrized divergence between these densities. This direct visualization of models is
very simple and useful for diagnosis of the model selection, especially for nonnested
models. Problems such as overparametrization or misspecification of the models are
identified from the configuration of the points. Structural patterns in good models
are also found as clusters. This is complementary to the methods for assessing the
+| uncertainty of model selection; a brief review is given for the confidence set of mod-
els derived from the variance of log-likelihood differences, the bootstrap selection
probability, and the simultaneous likelihood ratio test. Illuminating examples from
the variable selection in multiple regression as well as practical examples from the
phylogeny tree reconstruction are given to illustrate the methodology.




