
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: OO pp ee rr aa tt ii oo nn ss   RR ee ss ee aa rr cc hh

ISSN 1342-2804

Approximately unbiased tests of regions using
multistep-multiscale bootstrap resampling

Hidetoshi Shimodaira

March 2004, B–402



auttex04/main.tex 2004-03-09 09:57:58 shimo

Approximately unbiased tests of regions using

multistep-multiscale bootstrap resampling

Hidetoshi Shimodaira

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

shimo@is.titech.ac.jp

March, 2004

RUNNING HEAD: MULTISTEP-MULTISCALE BOOTSTRAP

Research Reports B-402, Department of Mathematical and Com-

puting Sciences, Tokyo Institute of Technology, Tokyo, Japan.

Submitted to Annals of Statistics

1



Summary

Approximately unbiased tests based on the bootstrap probabilities are considered for the

exponential family of distributions with unknown expectation parameter vector, where

the null hypothesis is represented as an arbitrary-shaped region with smooth boundaries.

This problem is discussed previously in Efron and Tibshirani (1998), and a corrected p-

value with second-order asymptotic accuracy is calculated by the two-level bootstrap of

Efron, Halloran and Holmes (1996) based on the ABC bias correction of Efron (1987).

Our argument is an extension of their asymptotic theory, where the geometry, such as

the signed distance and the curvature of the boundary, plays an important role. We give

another calculation of the corrected p-value without finding the “nearest point” on the

boundary to the observation, which is required in the two-level bootstrap and is an imple-

mentational burden in complicated problems. The key idea is to alter the sample size of

the replicated dataset from that of the observed dataset. The frequency of the replicates

falling in the region is counted for several sample sizes, and then the p-value is calculated

by looking at the change in the frequencies along the changing sample sizes. This is the

multiscale bootstrap of Shimodaira (2002), which is third-order accurate for the multi-

variate normal model. Here we introduce a newly devised multistep-multiscale bootstrap,

calculating a third-order accurate p-value for the exponential family of distributions. In

fact, our p-value is asymptotically equivalent to those obtained by the double bootstrap of

Hall (1992) and the modified signed likelihood ratio of Barndorff-Nielsen (1986) ignoring

O(n−3/2) terms, yet the computation is less demanding and free from the model specifi-

cation. The algorithm is remarkably simple despite complexity of the theory behind it.

The differences of the p-values are illustrated in simple examples, and the accuracies of

the bootstrap methods are shown in a systematic way.

Keywords: problem of regions; information geometry; approximately unbiased test;

bootstrap probability; third-order accurate; multiscale bootstrap; bias correction.
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1 Introduction.

We start with a simple example of Efron and Tibshirani (1998) to illustrate the issue to

discuss. Let X1, . . . , Xn be independent p-dimensional multivariate normal vectors with

mean vector µ and covariance matrix identity Ip,

X1, . . . , Xn ∼ Np(µ, Ip).

For given observed values x1, . . . , xn, let us assume that we would like to know whether

‖µ‖2 = µ2
1 + · · ·+ µ2

p ≤ 1 or not. The problem is also described in a transformed variable

Y =
√
nX̄ with mean η =

√
nµ, where x̄ = (x1 + · · · + xn)/n is the sample average. We

have observed a p-dimensional multivariate normal vector y having unknown mean vector

η and covariance matrix the identity,

(1.1) Y ∼ Np(η, Ip).

Then the null hypothesis we are going to test is η ∈ R with the spherical region

(1.2) R = {η : ‖η‖ ≤ √
n}.

This problem is simple enough to give the exact answer. The frequentist confidence

level, namely the probability value (p-value), for the spherical null hypothesis is calculated

as the probability of ‖Y ‖2 being greater than or equal to the observed ‖y‖2 assuming that

η is on the boundary ∂R = {η : ‖η‖ =
√
n} of R. The exact p-value is easily calculated

knowing that ‖Y ‖2 is distributed as the chi-square distribution with degrees of freedom

p and the non-centrality ‖η‖2.

In this paper we are going to remove two restrictions in the above problem for gener-

alization. (i) The underlying probability model for Y is the exponential family of distri-

butions, instead of the multivariate normal model; we denote the density function with

the expectation parameter η as

(1.3) Y ∼ f(y; η).

(ii) The null hypothesis will be represented as an arbitrary-shaped region R with smooth

boundaries, instead of the spherical region. The surface of ∂R may be represented as the

Taylor series with coefficients dab, eabc, . . .

(1.4) ∆ηp = −dab∆ηa∆ηb − eabc∆ηa∆ηb∆ηc + · · ·

in the local coordinates (∆η1, . . . ,∆ηp) by taking the origin at a point on ∂R
and rotating the axes properly. The summation convention such as dab∆ηa∆ηb =
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∑p−1
a=1

∑p−1
b=1 d

ab∆ηa∆ηb will be used, where the indices a, b, . . .may run through 1, . . . , p−1

and i, j, . . . may run though 1, . . . , p when used as subscripts or superscripts for p-

dimensional vectors. The axes are taken so that ∆η1, . . . ,∆ηp−1 are for the tangent space

of the surface, and ∆ηp is for its orthogonal space taken positive in the direction pointing

away from R. This general setting is the “problem of regions” discussed previously in

Efron and Tibshirani (1998), and our argument is an extension of their asymptotic theory,

where the geometry, such as the signed distance and the curvature of the boundary, plays

an important role.

Since the exact p-value is available only for special cases, we will discuss several boot-

strap methods to calculate approximate p-values from y under the assumptions (i) and

(ii) above. Let α denote a specified significance level, and α̂(y) denote an approximate

p-value. A large value of α̂(y) may indicate an evidence to support the null hypothesis

η ∈ R. On the other hand, if α̂(y) < α is observed, then we reject the null hypothesis, and

conclude that η �∈ R. The hypothesis test of R is said unbiased if the rejection probability

is equal to α whenever η ∈ ∂R. The approximate p-value is said k-th order accurate if

the asymptotic bias is of order O(n−k/2), i.e.,

(1.5) Pr {α̂(Y ) < α; η} = α +O(n−k/2), η ∈ ∂R
holds for 0 < α < 1. For sufficiently large n, approximately unbiased p-values of higher-

order accuracy are considered to be better than those of lower-order accuracy.

We will not specify the probabilistic model nor the shape of the region explicitly in the

calculation of p-value, but only assume that a mechanism is available to us for generating

the bootstrap replicates and identifying whether the outcomes are in the region or not.

This setting is important for complicated practical applications, where the exact p-value is

not available and thus bootstrap methods are used for approximation. The phylogenetic

tree selection discussed in Efron, Halloran and Holmes (1996) and Shimodaira (2002) is

a typical case; the history of evolution represented as a tree is inferred by a model-based

clustering of the DNA sequences of organisms, where we are given a complex computer

software for inferring the tree from a dataset. For calculating p-values of the hypothetical

evolutionary trees, we can easily run bootstrap simulations, although computationally

demanding, by repeatedly applying the software to replicated datasets.

We confine our attention to the parametric bootstrap of continuous random vectors

for mathematical simplicity. We also assumed that the boundary of the region is a smooth

surface. In the practical applications, however, it is often the case that the nonparametric

bootstrap is employed, the random vector is discrete, and the boundary is nonsmooth.

Regions with nonsmooth boundaries, in particular, may lead to a serious difficulty as

discussed in Perlman and Wu (1999, 2003). A further study is needed to bridge these

gaps between the theory and practice.
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The frequency of the bootstrap replicates falling in the region, namely the bootstrap

probability, has been used widely since its application to the phylogenetic tree selection

in Felsenstein (1985). This is also named “empirical strength probability” of R in Liu

and Singh (1997), where a modification for nonsmooth boundary is discussed as well.

The bootstrap probability is, however, biased as an approximation to the exact p-value,

and thus the two-level bootstrap of Efron, Halloran and Holmes (1996) and Efron and

Tibshirani (1998) is developed to improve the accuracy. Under the assumptions (i) and

(ii) above, the two-level bootstrap calculates a second-order accurate p-value, whereas the

bootstrap probability is only first-order accurate.

The bias of the bootstrap probability mainly comes from the curvature of ∂R. The

two-level bootstrap estimates the curvature for bias correction, where the curvature is

estimated by generating second-level replicates around η̂(y). Here η̂(y) denotes the max-

imum likelihood estimate for η restricted on ∂R. η̂(y) is the nearest point on ∂R to y

for (1.1). For the spherical region, η̂(y) =
√
ny/‖y‖ is easily obtained, but η̂(y) must

be obtained by numerical search in general, leading to an implementational burden in

complex problems. This motivated our development of a new method.

The multiscale bootstrap is developed in Shimodaira (2002) to calculate another bias

corrected p-value. It does not require η̂(y). Instead, the bootstrap probabilities are

calculated for sets of bootstrap replicates with several sample sizes which may differ from

that of the observed data. This in effect alters the scale parameter of the replicates (Fig. 1).

The key idea is to estimate the curvature from the change in the bootstrap probabilities

along the changing sample sizes. The corrected p-value is third-order accurate for any

arbitrary-shaped region with smooth boundaries under the multivariate normal model.

The normality assumption is not very restrictive as it might look at first, because the

procedure is transformation-invariant and should work fine if there exists a transformation

from the dataset to the normal Y and if the null hypothesis is represented as a region of η.

We do not have to know what the transformation is. However, it becomes only first-order

accurate if there is no such transformation to (1.1) but only to (1.3).

— Insert Fig. 1 Here —

The multiscale bootstrap can be used easily for complex problems. It is as easy as

the usual bootstrap. We only have to change the sample size of the bootstrap replicates,

and apply a regression fit to the bootstrap probabilities. The bias corrected p-value is

calculated from the slope of the regression curve (Fig. 2). This procedure is implemented in

a computer software (Shimodaira and Hasegawa 2001) for the phylogenetic tree selection,

and is also applied to the gene network estimation from microarray expression profiles

(Kamimura et al. 2003). In these applications, the multiscale bootstrap can calculate the
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p-values for many related hypotheses at the same time; we do not have to run the time-

consuming bootstrap simulations separately for these hypotheses. For example, biologists

are interested in the monophyletic hypothesis that some specified species constitute a

cluster in the phylogenetic tree, and there are many such hypotheses for groups of species.

The bootstrap probabilities for these hypotheses are obtained at the same time from a

single run of bootstrap simulation for each scale. We only have to apply the regression fit

separately to the multiscale bootstrap probabilities of each hypothesis.

In this paper, we provide the theoretical foundation of the multiscale bootstrap, and

introduce a newly devised multistep-multiscale bootstrap resampling. This method cal-

culates an approximately unbiased p-value with third-order asymptotic accuracy under

the assumptions (i) and (ii). The previously developed method of Shimodaira (2002)

corresponds to a special case of the new method, i.e., the one-step multiscale bootstrap.

For explaining the bootstrap methods, a rather intuitive argument is given in Sec-

tions 2 to 6 using simple examples. A more formal argument is given in Section 7, and

the technical details are given in a supporting document (Shimodaira 2004). We introduce

a modified signed distance, and give a unified approach to the asymptotic analysis of the

bootstrap methods using the Edgeworth series as well as the tube formula of Weyl (1939).

The third-order accuracy is also shown there for the p-value computed by the modified

signed likelihood ratio (Barndorff-Nielsen 1986), which requires the analytic expression

of the likelihood function, and for the p-value computed by the double bootstrap (Hall

1992), which requires huge number of replicates as well as computation of η̂(y). The

multistep-multiscale bootstrap method requires only the bootstrap mechanism for gener-

ating replicates around y, inheriting the simplicity from the one-step multiscale bootstrap.

The price for higher-order accuracy and simpler implementation is a large number of repli-

cates, which can be as large as that of the double bootstrap. These three p-values are, in

fact, shown to be equivalent ignoring O(n−3/2) terms.

Our argument may not be justified unless the assumptions (i) and (ii) hold. We are not

sure yet how robust the multistep-multiscale bootstrap method is under misspecifications

of the exponential family model. It is shown at the end of Section 4, however, that the

one-step method adjusts the bias halfway, though not completely, under misspecifications

of the normal model. A simulation study in Shimodaira (2002) shows that the bias

of the one-step method under the normal model is very small even if the boundary is

piecewise smooth, but the bias becomes larger as η moves closer to nonsmooth points on

the boundary.
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2 The two-level bootstrap resampling.

Although our ultimate goal is to get rid of the normal assumption, we use normality in

this section to illustrate the bootstrap methods, and besides (1.1) we also assume (1.2).

For given observed value x̄, we consider the parametric bootstrap resampling

X∗
1 , . . . , X

∗
n1

∼ Np(x̄, Ip).

Typically, the sample size n1 of the replicated dataset should be equal to n, but we reserve

the generality of using any value for n1. The scaling factor of the bootstrap, τ1 =
√
n/n1,

will be altered later in the multiscale bootstrap. Once we specify τ1, we may generate

B, say 10,000, replicated datasets, and compute the average X̄∗ = (X∗
1 + · · · + X∗

n1
)/n1

for each replicate. A large value of the frequency that ‖X̄∗‖2 ≤ 1 holds in the replicates

may indicate a high chance of the null hypothesis ‖µ‖2 ≤ 1 being correct. This is also

described in a transformed variable Y ∗ =
√
nX̄∗. For given observed value y, we consider

the parametric bootstrap resampling

(2.1) Y ∗ ∼ Np(y, τ
2
1 Ip),

and the bootstrap probability with scale τ1 is denoted by

α̃1(y, τ1) = Pr{Y ∗ ∈ R; y, τ1},

where the index 1 indicates the “one-step” bootstrap in connection with α̃2 and α̃3 defined

later as shown in Table 1. α̃1 is estimated by the frequency of Y ∗ ∈ R from the B

bootstrap replicates with the binomial variance α̃1(1 − α̃1)/B.

— Insert Table 1 Here —

Let us consider a numerical example with

(2.2) p = 4, n = 10, ‖x̄‖2 = 2.680.

Although ‖x̄‖2 > 1, we are not sure if ‖µ‖2 ≤ 1 holds or not. The frequentist confidence

level for the null hypothesis is given by the exact p-value, which we will denote by α̂∞(y),

or simply α̂∞ for brevity sake. In this numerical example, the value of ‖x̄‖2 is in fact

chosen to make α̂∞(y) = 0.05. α̂∞ may be approximated by the bootstrap probability

with τ1 = 1, denoted by

α̂0(y) = α̃1(y, 1).

This turns out to be α̂0(y) = 0.0085, showing α̂0 is not a very good approximation to α̂∞.

Here the problem is so simple that α̂0(y) as well as α̂∞(y) can be computed numerically
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from the non-central chi-square distribution function. If the bootstrap resampling with

B = 10, 000, say, is used for α̂0, the standard error becomes 0.0009.

A modification of α̂0 is developed based on a geometric theory in Efron, Halloran

and Holmes (1996) and Efron and Tibshirani (1998) to improve the accuracy of the

approximation to α̂∞. The idea is to compute α̂0(η̂(y)) by generating the second-level

replicates around η̂(y) for estimating the curvature of the surface ∂R. When the surface

of ∂R is flat, α̂0(η̂(y)) = 1
2
. It becomes smaller/larger than 1

2
when the surface is curved

toward/away from R. Let z denote a generic symbol for the z-value corresponding to a

p-value α with relation z = −Φ−1(α), where Φ−1(·) is the inverse of the standard normal

distribution function Φ(·). For example, we may write ẑ0(y) = −Φ−1(α̂0(y)). The ABC

conversion formula of Efron (1987) and DiCiccio and Efron (1992) is

(2.3) ẑabc(y) =
ẑ0(y) − ẑ0(η̂(y))

1 − â(ẑ0(y) − ẑ0(η̂(y))
− ẑ0(η̂(y)),

where ẑabc(y), ẑ0(y), and ẑ0(η̂(y)) are denoted Ẑ, Z̃, and ẑ0, respectively, in the notation of

eq. (6.6) of Efron and Tibshirani (1998). The corrected p-value for the two-level bootstrap

is then defined by α̂abc(y) = Φ(−ẑabc(y)). The acceleration constant â, characterizing the

probabilistic model, is known to be â = 0 for the normal model. â may also be estimated

using the second-level bootstrap for (1.3); for details we refer to Efron, Halloran and

Holmes (1996). Note that the sign in front of â in (2.3) is reversed from that of eq. (6.6)

of Efron and Tibshirani (1998), because ∆ηp-axis is taking the opposite direction here.

The p-values for the numerical example of (2.2) are

α̂0(y) = 0.0085, α̂0(η̂(y)) = 0.315, α̂abc(y) = 0.0775, α̂∞(y) = 0.05.

We observe that α̂abc shows a great improvement over α̂0 to approximate α̂∞. This

improvement is also confirmed in the asymptotic argument. It has been shown in Efron

and Tibshirani (1998) that k = 1 for α̂0, and k = 2 for α̂abc under (1.3) and (1.4).

3 Multiscale bootstrap resampling.

Here we continue to use the normal model (1.1) for the argument of the corrected p-value

in this section. The bootstrap probability changes if the replicate sample size changes.

When we alter n1 = 10 to n1 = 3 for the numerical example of (2.2), or equivalently

alter the scale τ1 = 1 to τ1 =
√

10/3, we observe that α̂1(y, 1) = 0.0085 changes to

α̂1(y,
√

10/3) = 0.0359. In the multiscale bootstrap, α̂1(y, τ1) is computed for several

values of τ1 =
√
n/n1. For example, instead of n = 10, we use the following five n1 values

(3.1) n1 = 3, 6, 10, 15, 21,
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and compute the corresponding bootstrap probabilities

(3.2) α̃1(y, τ1) = 0.0359, 0.0205, 0.0085, 0.0028, 0.0008.

These values as well as those for other parameter settings are shown in Fig. 2 by

plotting the z-value along the inverse of the scale. The horizontal axis is 1/τ1 =√
n1/n = 0.55, 0.78, 1, 1.23, 1.45, and the vertical axis is z̃1(y, τ1) = −Φ−1(α̃1(y, τ1)) =

1.80, 2.04, 2.39, 2.77, 3.17.

— Insert Fig. 2 Here —

Figure 2 shows these values along with a regression fit. This is obtained by fitting a

regression model with explanatory variables 1/τ1 and τ1

(3.3) z̃1(y, τ1) ≈ v̂/τ1 + ĉτ1

to the plot, where v̂ and ĉ are the regression coefficients estimated as

(3.4) v̂ = 2.002, ĉ = 0.385

for the plot of (3.2). We observe that the regression fit agrees with the plots very well for

the cases in Fig. 2. The regression model (3.3) has been justified in Shimodaira (2002)

under (1.1) and (1.4); we will use “≈” to indicate that the equality holds up to O(n−1)

terms with the error of order O(n−3/2). The regression model with explanatory variables

1/τ1 and τ1 will be justified later, in fact, under (1.3) and (1.4) as seen in (7.15), although

the following interpretation of the coefficients should be modified accordingly.

A simple geometric interpretation can be given to the regression coefficients under

(1.1) and (1.4). Efron and Tibshirani (1998) has shown a formula equivalent to

(3.5) ẑ0(y) ≈ v̂ + ĉ,

where v̂ and ĉ correspond to x0 and d̂1 − x0d̂2, respectively, in their eq. (2.19). v̂ is

the signed distance of Efron (1985), defined as the distance from y to ∂R with a posi-

tive/negative sign when y is outside/inside of R. Thus v̂ = ±‖y−η̂(y)‖ measures evidence

of the null hypothesis being wrong. ĉ is related to the (p−1)×(p−1) matrix d̂ab measuring

the curvature of ∂R at η̂(y); d̂ab is defined as dab in (1.4) by making the local coordinates

orthonormal at η̂(y). In our notation, ĉ = d̂1 − v̂d̂2, where d̂1 = d̂aa is the trace of d̂ab,

and d̂2 = (d̂ab)2 =
∑p−1

a=1

∑p−1
b=1(d̂

ab)2 is that for the squared matrix. When ∂R is flat at

η̂(y), d̂ab = 0 and thus ĉ = 0. v̂, d̂1, and d̂2 are transformation-invariant functions of y

calculated from the shape of the boundary and the density function of Y ; they are referred

to as geometric quantities here. Under (1.1) and (1.2) these quantities are

(3.6) v̂ = ‖y‖ −√
n, d̂1 =

p− 1

2
√
n
, d̂2 =

p− 1

4n
.
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This computes directly

(3.7) v̂ = 2.015, ĉ = 0.323

for (2.2), showing a good agreement with those computed indirectly from the multiscale

bootstrap. v̂ and ĉ in (3.4) are actually estimating those in (3.7), thus it would be

appropriate to denote the former as ˆ̂v and ˆ̂c, although we do not make the notational

distinction. This estimation is third-order accurate, since the regression model (3.3) holds

for (3.7) with error of O(n−3/2).

Considering that v̂ and ĉ are functions of y, we may define a statistic

(3.8) ẑ1(y) = v̂ − ĉ.

This is equivalent to the pivot statistic of Efron (1985), and Pr{ẑ1(Y ) ≤ x; η} ≈ Φ(x)

for η ∈ ∂R under (1.1) and (1.4); see eq. (2.16) of Efron and Tibshirani (1998). Thus

a third-order accurate p-value is defined by α̂1(y) = Φ(−ẑ1(y)). We can compute α̂1(y)

using v̂ and ĉ obtained from the multiscale bootstrap. For the example of (2.2),

α̂1(y) = Φ(−2.002 + 0.385) = 0.0529,

showing an improvement over α̂abc(y) = 0.0775 to approximate α̂∞(y) = 0.05. The index

of α̂1 indicates the “one-step” bootstrap as similarly for α̃1.

It is interesting to note that we can also read off the values of ẑ1(y) from Fig. 2. The

differentiation of (3.3) with respect to 1/τ1 is

∂z̃1(y, τ1)

∂(1/τ1)
≈ v̂ − ĉτ 2

1 ,

and the slope of the regression curve at 1/τ1 = 1 gives ẑ1(y). The corrected p-value

α̂1 is essentially obtained from the change of the bootstrap probability in the multiscale

bootstrap.

4 Two-step multiscale bootstrap resampling.

The one-step multiscale bootstrap described in Section 3 calculates a very accurate p-

value for arbitrary-shaped region if there exists a transformation from the dataset to the

normal model. However, it can be inaccurate if such a transformation does not exist even

approximately. This restriction is essentially comes from the fact that the covariance

matrix of y in (1.1) is constant with respect to η. The acceleration constant â of the ABC

formula measures the rate of change in the covariance matrix, and â is assumed zero in
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the derivation of (3.8). Here we introduce two-step multiscale bootstrap for estimating â

to improve the accuracy of the one-step multiscale bootstrap.

A breakdown of the one-step multiscale bootstrap method is illustrated in the following

example. Let X1, . . . , Xn be 1-dimensional independent exponential random variables

with mean µ,

X1, . . . , Xn ∼ exp(−x/µ − logµ),

and let the null hypothesis of our interest be µ ≤ 1. The exact p-value is calculated by

knowing that a transformed variable Y =
√
nX̄ is distributed as Gamma with shape n

and mean η =
√
nµ. We consider a numerical example with

(4.1) p = 1, n = 10, x̄ = 1.571,

so that α̂∞(y) = 0.05. The multiscale bootstrap probabilities for the five n1 values in

(3.1) are computed as

(4.2) α̃1(y, τ1) = 0.2990, 0.1875, 0.1115, 0.0622, 0.0322,

and the regression coefficients of (3.3) are estimated as v̂ = 1.328, ĉ = −0.110. Then the

corrected p-value is computed as

(4.3) α̂1(y) = Φ(−1.328 − 0.110) = 0.0753.

Although this is an improvement over α̂0(y) = 0.112, it is not as good as in the normal

example above. The pivot (3.8) is not justified under (1.3) in general, and α̂1(y) is, in

fact, only first-order accurate for the exponential example.

The two-step multiscale bootstrap is simply to generate a second-step replicate from

every first-step replicate. Let us denote the conditional density of the first-step bootstrap

replicate Y ∗ =
√
nX̄∗ as

(4.4) Y ∗ ∼ f(y∗; y, τ1)

given mean y =
√
nX̄ and scale τ1 under (1.3), which reduces to f(y∗; y, 1) = f(y∗; y)

when τ1 =
√
n/n1 is unity. This becomes (2.1) for (1.1), and Gamma with shape n1 and

mean y for the exponential example. We generate a second-step replicate Y ∗∗ for each

y∗. The conditional density of Y ∗∗ given y∗ takes the same form as (4.4), but with scale

parameter τ2 =
√
n/n2;

(4.5) Y ∗∗ ∼ f(y∗∗; y∗, τ2).

For the normal example, (4.5) is equivalent to generating

X∗∗
1 , . . . , X

∗∗
n2

∼ Np(x̄
∗, Ip)
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for given x̄∗, and using the transformed variable Y ∗∗ =
√
nX̄∗∗. The two-step bootstrap

probability with a pair of scales (τ1, τ2) is then defined by

α̃2(y, τ1, τ2) = Pr{Y ∗∗ ∈ R; y, τ1, τ2}
=

∫
α̃1(y

∗, τ2)f(y∗; y, τ1) dy∗,

where the integration is taken over the range of the components. We can write α̃1(y, τ1) =

α̃2(y, τ1, 0), because the conditional density of Y ∗∗ converges to the point mass at y∗

by taking the limit τ2 → 0. The two-step bootstrap might look similar to the double

bootstrap of Hall (1992), but they are very different. We should generate thousands of

Y ∗∗ for given y∗ in the double bootstrap, but only one Y ∗ in the two-step bootstrap.

Let us consider two n2 values

(4.6) n2 = 6, 15

for the normal example with parameter values (2.2). The two-step bootstrap probabilities

are, for example,

α̃2(y,
√

10
6
,
√

10
6
) = 0.0359, α̃2(y,

√
10
10
,
√

10
15

) = 0.0205.

Of course they give α̃1(y,
√

10
3
) and α̃1(y,

√
10
6
), respectively, in (3.2), because

α̃2(y, τ1, τ2) = α̃1(y,
√
τ 2
1 + τ 2

2 )

for (1.1). For the exponential example with parameter values (4.1), however,

α̃2(y,
√

10
6
,
√

10
6
) = 0.3063, α̃2(y,

√
10
10
,
√

10
15

) = 0.1866

are different, though very slightly, from α̃1(y,
√

10
3
) = 0.2990 and α̃1(y,

√
10
6
) = 0.1875,

respectively, in (4.2). The difference of α̃2(y, τ1, τ2) from α̃1(y,
√
τ 2
1 + τ 2

2 ) for (1.3) is

explained by

(4.7) z̃2(y, τ1, τ2) − z̃1(y,
√
τ 2
1 + τ 2

2 )
.
=
âτ 2

1 τ
2
2 (v̂2 − (τ 2

1 + τ 2
2 ))

(τ 2
1 + τ 2

2 )5/2
.

We will use “
.
=” to indicate that the equality holds up to O(n−1/2) terms with the error

of order O(n−1). The formula (4.7) and a revised regression model

(4.8) z̃1(y, τ1)
.
=
v̂ − 2âv̂2

τ1
+ (d̂1 − â)τ1,

12



for (1.3) are consequences of more general argument with third-order accuracy shown in

Section 7.

The key idea in the two-step multiscale bootstrap is to estimate â by looking at the dif-

ference of α̃2(y, τ1, τ2) from α̃1(y,
√
τ 2
1 + τ 2

2 ). Once we compute α̃1(y, τ1) and α̃2(y, τ1, τ2)

for several values of (τ1, τ2) by the one-step and two-step multiscale bootstrap, we can

estimate v̂, d̂1 and â by fitting (4.7) and (4.8) to the observed bootstrap probabilities. A

second-order accurate p-value, denoted α̂2(y), is then computed by using the estimated

geometric quantities in the z-value

(4.9) ẑ2(y)
.
= v̂ − d̂1 + â(1 − v̂2).

This expression is shown to be equivalent to (2.3) up to O(n−1/2) terms by using (4.8);

ẑ0(y)
.
= v̂ + d̂1 − â(1 + 2v̂2) and ẑ0(η̂(y))

.
= d̂1 − â. In the next section, we will describe a

procedure based on the above idea as well as its refined version with third-order accuracy.

It follows from (4.8) that the one-step multiscale bootstrap estimates v̂−2âv̂2 and d̂1−â
for the coefficients v̂ and ĉ, respectively, under (1.3). Thus ẑ1(y)

.
= v̂ − d̂1 + â(1 − 2v̂2)

.
=

ẑ2(y) − âv̂2 as well as ẑ0(y)
.
= ẑ2(y) + 2d̂1 − 2â − âv̂2 is first-order accurate in general.

Since the difference ẑ2(y)− ẑ1(y)
.
= âv̂2 does not involve d̂1, the one-step method adjusts

the bias resulted from the curvature even if the normal model is misspecified.

5 Three-step multiscale bootstrap resampling.

We may repeat “stepping” to obtain multistep-multiscale bootstrap probabilities so that

we might be able to compute higher-order accurate p-values. This is the case, in fact,

for going one step further, although the results are not known for yet further stepping.

We introduce three-step multiscale bootstrap for computing a third-order accurate p-value,

denoted α̂3(y), under (1.3) and (1.4). In the following argument, we first describe the

procedure to compute α̂2(y), which helps understand that for α̂3(y).

The expression of ẑ2(y, τ1, τ2) is obtained from (4.7) by substituting
√
τ 2
1 + τ 2

2 for τ1

in (4.8). This is also expressed as

(5.1) z̃2(y, τ1, τ2)
.
= ζ2(γ̂1, γ̂2, γ̂3, τ1, τ2),

where the function ζ2 on the right hand side is defined by

(5.2) ζ2(γ1, γ2, γ3, τ1, τ2) = s1γ1(1 + s2γ3) − γ2 + s2γ3

s1γ1
.

Here s1 = (τ 2
1 + τ 2

2 )−1/2 and s2 = τ 2
1 τ

2
2 s

4
1 are functions of the scales, and γ̂i’s are specified

as functions of y under (1.3) and (1.4);

(5.3) γ̂1
.
= v̂ − 2âv̂2, γ̂2

.
= v̂(â− d̂1), γ̂3

.
= v̂â.

13



These γ̂i’s are also used to express

(5.4) ẑ2(y) = γ̂1(1 + γ̂3) +
γ̂2

γ̂1

,

which is equivalent to (4.9) up to O(n−1/2) terms. We calculate α̃2(y, τ1, τ2) for several

values of (τ1, τ2) by the two-step multiscale bootstrap resampling, and fitting the ob-

served z̃2(y, τ1, τ2) = −Φ−1(α̃2(y, τ1, τ2)) to the nonlinear regression model (5.1). Then

the estimated γ̂i’s are used to compute α̂2(y) = Φ(−ẑ2(y)) from (5.4).

This procedure is generalized for three-step multiscale bootstrap resampling. A third-

step replicate Y ∗∗∗ is generated for each y∗∗ by

Y ∗∗∗ ∼ f(y∗∗∗; y∗∗, τ3)

using the scale τ3, and the three-step bootstrap probability is defined by

α̃3(y, τ1, τ2, τ3) = Pr{Y ∗∗∗ ∈ R; y, τ1, τ2, τ3}
=

∫
α̃2(y

∗, τ2, τ3)f(y∗; y, τ1) dy∗.

Then observed z̃3(y, τ1, τ2, τ3) = −Φ−1(α̃3(y, τ1, τ2, τ3)) for several values of (τ1, τ2, τ3) are

fitted to the nonlinear regression model ζ3 defined below.

ζ3(γ1, γ2, γ3, γ4, γ5, γ6, τ1, τ2, τ3)(5.5)

= γ1s1

(
1 + γ3s2 + 4γ2

3s
2
2 + γ5s3 + γ6s4

)
−(γ1s1)

−1
(
γ2 + γ3s2 + 7γ2

3s
2
2 + γ4s2 + 3γ5s3 + 3γ6s4

)
,

where s1, . . . , s4 are given by

s1 = (τ 2
1 + τ 2

2 + τ 2
3 )−1/2, s2 = (τ 2

1 τ
2
2 + τ 2

2 τ
2
3 + τ 2

3 τ
2
1 )s4

1

s3 = (τ 2
1 τ

2
2 τ

2
3 + τ 4

2 τ
2
3 + τ 4

1 (τ 2
2 + τ 2

3 ))s6
1, s4 = (τ 2

1 τ
2
2 τ

2
3 )s6

1.

The least squares estimates for the six γi’s are denoted by γ̂1, . . . , γ̂6. We then compute

α̂3(y) = Φ(−ẑ3(y)) by using the estimated γ̂i’s in

(5.6) ẑ3(y) = γ̂1

(
1 + γ̂3 + 4γ̂2

3 + γ̂6

)
+ γ̂−1

1

(
γ̂2 + γ̂2

3/2 + γ̂4 + γ̂5

)
.

Section 7 is mostly devoted to proving the third-order accuracy of α̂3(y). The justi-

fication for the second-order accuracy of α̂2(y) is then immediately follows by ignoring

O(n−1) terms. As seen in (5.3), γ̂1 is O(1), and γ̂2 and γ̂3 are O(n−1/2). The rest of three

O(n−1) geometric quantities are defined in Section 7.8. We do not have to know, however,

the expressions of γ̂i’s for computing α̂3(y), because their values are estimated from the

nonlinear regression, and the estimation error is only O(n−3/2).
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It should be noted that there are other asymptotically equivalent expressions for ζ3 and

ẑ3 as functions of coefficients transformed from the six γ̂i’s; we have shown the two different

expressions for ζ2 and ẑ2 as functions of either γ̂1, γ̂2, γ̂3 or v̂, d̂1, â. The expressions (5.5)

and (5.6) are obtained by seeking simple ones.

6 Examples.

The two procedures in the previous section are applied to the exponential example with

parameter values (4.1). By the two-step multiscale bootstrap, the least squares estimates

of γ̂i’s are

γ̂1 = 1.328, γ̂2 = 0.144, γ̂3 = 0.137,

and the corrected p-value is computed as

α̂2(y) = 1 − Φ

{
1.328(1 + 0.137) +

0.144

1.328

}
= 0.0528,

which becomes closer to the exact p-value α̂∞(y) = 0.05 than α̂1(y) = 0.0753 computed

in (4.3). By the three-step multiscale bootstrap, the least squares estimates of γ̂i’s are

γ̂1 = 1.328, γ̂2 = 0.145, γ̂3 = 0.127, γ̂4 = −0.018, γ̂5 = −0.0004, γ̂6 = −0.036,

and the corrected p-value is

α̂3(y) = 1 − Φ

{
1.328(1 + 0.127 + 0.065 − 0.036)

+
0.145 + 0.008 − 0.018 − 0.0004

1.328

}
= 0.0509,

which becomes even better than α̂2(y) = 0.0528.

— Insert Table 2 Here —

In Table 2, p-values are computed for several parameter settings. The bootstrap

probabilities are computed numerically (B = ∞), but the standard errors due to the

bootstrap resampling are shown for B = 10, 000. The first row corresponds to the normal

model with (2.2), and the fourth row corresponds to the exponential model with (4.1).

The following two rows for each are obtained by changing n = 10 to 100 and 1000.

Similarly the last six rows are obtained by changing α̂∞ = 0.05 to 0.95. We observe that

all the p-values tend to converge to α̂∞ as n grows, and the corrected p-values are faster

for the convergence than α̂0.
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α̃3(y, τ1, τ2, τ3) is computed for all the combinations of (τ1, τ2, τ3) values as noted in

the table; five (τ1, 0, 0)’s, ten (τ1, τ2, 0)’s, and twenty (τ1, τ2, τ3)’s. Therefore, the numbers

of bootstrap probabilities are 5, 15, and 35, respectively, for α̂1(y), α̂2(y), and α̂3(y).

The nonlinear regression models are fitted to these bootstrap probabilities, and the least

squares estimates of the geometric quantities are calculated; each residual term is weighted

inversely proportional to the estimated variance. For stable estimation, the ridge regres-

sion is also used; a penalty term
∑6

i=1 ωiγ̂
2
i with small ωi values is added to the residual

sum of squares for minimization.

For the exponential distribution, α̂k is k-th order accurate (k = 1, 2, 3), and in fact

|α̂k − α̂∞| becomes smaller as k increases in the table. It turns out that |α̂abc − α̂∞| is

almost zero here, because α̂abc happens to be third-order accurate for the 1-dimensional

exponential distribution as shown in Section 7.7.

For the normal distribution, α̂1, α̂2, and α̂3 are third-order accurate, because γ̂3 =

· · · = γ̂6 = 0 under (1.1) as shown in Section 7.8. This may explain why |α̂k − α̂∞|
becomes larger as k increases in some of the rows. These four geometric quantities of zero

value are estimated from slight differences of bootstrap probabilities, leading to unstable

estimation as seen in the large standard errors. This is alleviated by the ridge regression;

even the worst case in the table α̂3 = 6.04 ± 1.13 may be allowed in practice. However,

the total number of replicates is 350,000 for α̂3, almost comparable to that of the double

bootstrap for achieving the same degree of the standard error.

Although α̂1 is first-order accurate for (1.3), it is reasonably accurate even for the

exponential model in the table. The total number of replicates is 50,000, yet the standard

error is considerably smaller than that of α̂3. Similar observation holds for the second-

order accurate α̂2. The one-step as well as two-step multiscale bootstrap may provide a

compromise between the number of replicates and the accuracy in practice.

7 Asymptotic analysis of the bootstrap methods.

7.1 A unified approach.

Our approach to assessing the bootstrap methods is not very elegant but rather elementary

and brute-force. We explicitly specify a curved coordinate system along ∂R, which is

convenient to work on the bootstrap methods. The density function of Y with respect to

the curved coordinates is first defined for τ = 1 in Section 7.2 and extended for τ > 0 in

Section 7.3. We define a modified signed distance by altering v̂ slightly, and its distribution

function is given in Section 7.4.

It turns out that the z-values of the bootstrap probabilities are special cases of the
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modified signed distance, and our approach gives an asymptotic analysis of the bootstrap

methods in a systematic way. Using the result of Section 7.4, a third-order accurate pivot

statistic is defined in Section 7.5, and the distribution functions of the bootstrap z-values

are shown in Sections 7.6 to 7.8, proving the main results of Section 5.

The proofs of lemmas are given in Shimodaira (2004). We have used the computer

software Mathematica for straightforward and tedious symbolic calculations; the program

file is available from the author upon request.

7.2 Tube coordinates.

In our curved coordinate system, a point η is specified by two parts; a point on ∂R and

the signed distance from it. This is an instance of the coordinate system used for the Weyl

tube formula, and we call it tube-coordinates. In the below, we will define the coordinate

system explicitly, and show the expression of the density function of Y in terms of the

tube-coordinates. We take the approach similar to that of Kuriki and Takemura (2000).

The density function of the exponential family of distributions is expressed as

(7.1) exp
(
θiyi − ψ(θ) − h(y)

)
,

where θ = (θ1, . . . , θp) is the natural parameter vector. We denote (7.1) by f(y; η) using

the expectation parameter vector η = (η1, . . . , ηp) = E(Y ), the expected value of Y . The

change of variables θ ↔ η is one-to-one, and is given by ηi = ∂ψ/∂θi, θi = ∂φ/∂ηi,

i = 1, . . . , p, where the potential function φ(η) is defined from the cumulant function ψ(θ)

by φ(η) = maxθ {θiηi − ψ(θ)}. The metric at η is denoted as

φij(η) =
∂2φ(η)

∂ηi∂ηj
,

and the derivatives of φ at η = 0 are denoted as

φi =
∂φ(η)

∂ηi

∣∣∣∣
0

, φij =
∂2φ(η)

∂ηi∂ηj

∣∣∣∣
0

, φijk =
∂3φ(η)

∂ηi∂ηj∂ηk

∣∣∣∣
0

, etc.

Since the exponential family is not uniquely expressed up to the affine transformation,

we assume without loss of generality that φi = 0 and φij = δij , where δij takes value one

when i = j otherwise zero. In other words, E(Y ) = 0, and cov(Y ), the covariance matrix

of Y , is Ip at θ = 0. We make our asymptotic argument local in a neighborhood of η = 0

by assuming the local alternatives.

The smooth surface ∂R of the region R is specified locally around η = 0 by

ηa(u) = ua, a = 1, . . . , p− 1; ηp(u) ≈ −dabuaub − eabcuaubuc,
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where u = (u1, . . . , up−1) is (p− 1)-dimensional parameter vector to specify a point η(u)

on ∂R. R is specified locally by ηp ≤ ηp(u). It follows from the argument below eq. (2.12)

of Efron and Tibshirani (1998) that dab = O(n−1/2) and eabc = O(n−1), and similarly,

φijk = O(n−1/2) and φijkl = O(n−1).

Let Ba
i (u) = ∂ηi/∂ua, i = 1, . . . , p, be the components of a tangent vector of the

surface for a = 1, . . . , p− 1. They are given explicitly as

Ba
b (u) = δab, b = 1, . . . , p− 1; Ba

p (u) ≈ −2dabub − 3eabcubuc,

and the metric in the tangent space is given by

φab(u) = φij(η(u))Ba
i (u)B

b
j(u)

≈ δab + φabcuc +
{

4dacdbd − 2dacφbdp − 2dbdφacp − dcdφabp + 1
2
φabcd

}
ucud,(7.2)

where φij(η(u)) ≈ δij + φijaua +
{−dabφijp + 1

2
φabij

}
uaub . Let Bp

i (u), i = 1, . . . , p, be

the components of the unit length normal vector orthogonal to the tangent vectors with

respect to the metric such that

φij(η(u))Ba
i (u)B

p
j (u) = 0, a = 1, . . . , p− 1; φij(η(u))Bp

i (u)B
p
j (u) = 1.

The components are calculated explicitly as Bp
a(u) ≈ (2dab − φabp)ub +

{
3eabc + dabφcpp +

dbcφapp − 2dbdφacd + φabdφcdp + 1
2
φabpφcpp − 1

2
φabcp

}
ubuc, and Bp

p(u) ≈ 1 − 1
2
φappua +{

−2dacdbc + 1
2
dabφppp + 1

2
φacpφbcp + 3

8
φappφbpp − 1

4
φabpp

}
uaub.

Let v be a scalar, and (u, v) be a p-dimensional vector. We consider reparameterization

defined by

(7.3) ηi(u, v) = ηi(u) +Bp
i (u)v, i = 1, . . . , p,

and assume η ↔ (u, v) is one-to-one at least locally around η = 0. (u, v) is the tube-

coordinates of the point η. The boundary ∂R is expressed simply by v = 0, and the

region R is v ≤ 0. (u, v) is used for indicating the parameter value η = η(u, v), or the

observation y = η(u, v). When there is a possibility of confusion, we may write y ↔ (û, v̂)

in contrast to η ↔ (u, v).

Since the normal vector is orthogonal to the surface, η(u) = η(u, 0) ∈ ∂R is the

projection of η(u, v) on to ∂R; û is the maximum likelihood estimate under the restricted

model specified by ∂R. η(û, 0) is denoted by η̂(y) in Section 1 as a function of y. v̂ is the

signed distance mentioned for (1.1) in Section 3.

v̂ is also related to the signed likelihood ratio R (McCullagh 1984, Severini 2000) by

R ≈ v̂ + 1
6
φ̂pppv̂2 + { 1

24
φ̂pppp − 1

72
(φ̂ppp)2}v̂3, where φ̂ppp and φ̂pppp are the third and fourth
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derivatives to the normal direction evaluated at η(û, 0) instead of η = 0. This third

derivative is associated with the acceleration constant. For the acceleration constant â,

the formula â = −1
6
φ̂ppp is obtained directly from eq. (2.9) of DiCiccio and Efron (1992),

or using eq. (6.7) of Efron (1987) and ∂3ψ/∂θi∂θj∂θk = −φijk. The expression for the

density function of (Û , V̂ ) is obtained from f(y; η) by change of variables as shown in the

following lemma.

Lemma 1 Let Y ∼ f(y; η) be the exponential family of distributions with η = E(Y ).

Without loss of generality we may assume that cov(Y ) = Ip at η = 0 and that the true

parameter value is specified by η = (0, . . . , 0, λ) for some λ, i.e., ηa = 0, a = 1, . . . , p− 1,

ηp = λ, or equivalently u = 0, v = λ using the tube coordinates (u, v) ↔ η. Let f(û, v̂;λ)

be the joint density function of (Û , V̂ ) ↔ Y . Then, ignoring the error of O(n−3/2), we

obtain

log f(û, v̂;λ) ≈(7.4)

g(v̂, λ)+ga(v̂, λ)ûa + gab(v̂, λ)ûaûb + gabc(v̂, λ)ûaûbûc + gabcd(v̂, λ)ûaûbûcûd,

where the four functions are defined by g(v̂, λ) = −1
2
p log(2π)− 1

2
(v̂−λ)2− 1

8
φiijj+ 1

6
(φijk)2−

1
3
φpppλ3− 1

8
φppppλ4+

{
2daa− 1

2
φaap + 1

2
φppp+ 1

2
φpppλ2+ 1

6
φppppλ3

}
v̂+

{
−2(dab)2+2dabφabp−

3
4
(φabp)2− 1

2
(φapp)2− 1

4
(φppp)2+ 1

4
φpppp+ 1

4
φaapp

}
v̂2− 1

6
φpppv̂3− 1

24
φppppv̂4, ga(v̂, λ) = 1

2
φabb+

1
2
φappλ2+1

6
φapppλ3+

{
−1

2
φappλ−dabφbcc+5dabφbpp+φappdbb−2φabcdbc+1

2
φabpφbcc−3

2
φabpφbpp+

1
4
φappφbbp − 3

4
φappφppp + 1

2
φabcφbcp − 1

2
φabbp + 1

2
φappp + 6eabb + dabφbppλ2 − 1

2
φabpφbppλ2 −

1
4
φappφpppλ2

}
v̂ +

{
−dabφbpp + 1

2
φabpφbpp + 1

4
φappφppp − 1

6
φappp

}
v̂3, gab(v̂, λ) = −1

2
δab −

dabλ − 1
2
dabφccp + 1

4
φabcc − 1

4
φacdφbcd + 2dacdbc − 2dacφbcp − 1

2
dabφpppλ2 +

{
−dab + 1

2
φabp −(

2dacdbc − 1
2
dabφppp + 1

4
φabpp − 1

2
φacpφbcp − 3

8
φappφbpp

)
λ
}
v̂, gabc(v̂, λ) = −1

6
φabc − eabcλ+{

−2eabc + 1
3
φabcp − 3

2
dabφcpp +dadφbcd− 1

2
φabdφcdp − 1

4
φabpφcpp

}
v̂, gabcd(v̂, λ) = −1

2
dabdcd +

1
2
φabpdcd − 1

24
φabcd.

7.3 Changing the scale.

We define a density function f(y; η, τ) with mean η and scale τ > 0 by modifying f(y; η).

Here τ is regarded as a known constant, whereas η is a unknown parameter vector. Let

φ(η, τ) be the potential function of f(y; η, τ), and φ(η) be that for f(y; η). Since the

density function is defined by specifying the potential function, the following equation

gives a definition of f(y; η, τ);

(7.5) φ(η, τ) = φ(η)/τ 2.

19



This f(y; η, τ) comes naturally from the multiscale bootstrap resampling. In fact, the

potential function of the replicate Y ∗ is φ(η, τ) = ‖η‖2/(2τ 2) for the normal example

(2.1) of Section 2, and that is φ(η, τ) = −n(1 + log η)/τ 2 for the exponential example

of Section 4, thus both agree with (7.5). The same applies to the exponential family in

general as shown below.

Lemma 2 Let X be a p-dimensional random vector of the exponential family. We assume

that Y is expressed as a sum of m independent X’s such that Y =
√
n(X1 + · · ·+Xm)/m

for m > 0, and that the density function is f(y; η) when m = n. Then Y ∼ f(y; η, τ) with

τ =
√
n/m for τ > 0.

We continue to use the tube-coordinates defined by the reparameterization η ↔ (u, v)

of (7.3). By altering the potential φ(η, 1) to φ(η, τ), the metric as well as the tube-

coordinates should have changed if we go back to the specification of η(u) and Bp(u)

given in the previous section. However, we continue to use the specification with τ = 1

for any τ > 0, so that the reparameterization η ↔ (u, v) does not depend on τ .

Lemma 3 Let f(û, v̂;λ) be the joint density function of (Û , V̂ ) ↔ Y given in Lemma 1,

and f(û, v̂;λ, τ) be that corresponding to f(y; η, τ) with scale τ > 0. Then the expression

of log f(û, v̂;λ, τ) is obtained from (7.4) by changing (û, v̂) to

(7.6) ũ = û/τ, ṽ = v̂/τ,

by adding the logarithm of the Jacobian log(1/τp) to (7.4), and replacing φijk, φijkl, dab,

eabc, and λ, respectively, with

(7.7) φ̃ijk = τφijk, φ̃ijkl = τ 2φijkl, d̃ab = τdab, ẽabc = τ 2eabc, λ̃ = λ/τ.

7.4 Modified signed distance.

We consider yet another transformation of the coordinates for expressing the bootstrap

z-values in modified v̂ values. Let w be a scalar variable defined formally by the series

(7.8) w = v +

∞∑
r=0

c̄rv
r + uc

∞∑
r=0

b̄crv
r,

where vr denotes the r-th power. The coefficients are c̄r = O(n−1/2) and b̄cr = O(n−1),

and their expressions are specified later. We assume the transformation (u, v) ↔ (u, w)

is one-to-one at least locally around (u, v) = 0. By inverting the series in (7.8), we also

have

(7.9) v = w −
∞∑

r=0

crw
r − uc

∞∑
r=0

bcrw
r,

20



where cr = c̄r −
∑r

s=0(r − s+ 1)c̄r−s+1c̄s, and bcr = b̄cr. The coefficients are cr = O(n−1/2)

and bcr = O(n−1). Let Ŵ be the random variable corresponding to w; the observed value

ŵ is defined by (7.8) but using the observed (û, v̂) instead of (u, v).

We call ŵ a modified signed distance characterized by the coefficients bcr, cr; ŵ reduces

to v̂ when all these coefficients being zero. The z-values of the bootstrap probabilities are

represented as ŵ by appropriately specifying the coefficients. The following lemma plays

a key role in studying the distributional properties of the bootstrap probabilities.

Lemma 4 Let us assume that the distribution of Y in the tube-coordinates is specified by

(Û , V̂ ) ∼ f(û, v̂;λ, τ), and the coefficients in eq. (7.9) are of order bcr = O(n−1) for r ≥ 0,

c0 = O(n−1/2), c1 = O(n−1), c2 = O(n−1/2), c3 = O(n−1), and cr = O(n−3/2) for r ≥ 4.

We define zc(ŵ;λ, τ) from the distribution function of the modified signed distance Ŵ as

Pr{Ŵ ≤ ŵ} = Φ(zc(ŵ;λ, τ)).

Then, the zc-formula is, ignoring the error of O(n−3/2), expressed as

(7.10) zc(ŵ;λ, τ) ≈ τ−1g−(ŵ, λ) + τg+(ŵ, λ),

where g−(ŵ, λ) = (ŵ − λ) − c0 − 1
3
φpppλ2 + 1

6
φpppλŵ + (1

6
φppp − c2)ŵ

2 − 1
6
c0φ

pppλ−
{
c1 +

1
3
c0φ

ppp
}
ŵ+

{
1
8
(φapp)2+ 1

18
(φppp)2− 1

8
φpppp

}
λ3+

{
−1

8
(φapp)2+ 1

24
φpppp

}
λ2ŵ+

{
− 1

24
(φppp)2+

1
24
φpppp− 1

6
c2φ

ppp
}
λŵ2+

{
− 1

72
(φppp)2+ 1

24
φpppp− 1

3
c2φ

ppp−c3
}
ŵ3, and g+(ŵ, λ) = −(daa+

1
6
φppp)+

{
(dab)2−dabφabp + 1

6
daaφppp+ 1

2
(φabp)2 + 1

2
(φapp)2 + 13

72
(φppp)2− 1

4
φaapp− 1

8
φpppp

}
ŵ+{

(dab)2 − 1
6
daaφppp + 1

8
(φapp)2 + 5

72
(φppp)2 − 1

24
φpppp

}
λ. Note that the zc-formula does not

involve the coefficients bcr, and that the distribution function of Ŵ is characterized by the

coefficients cr with third-order accuracy. The index c of zc indicates the coefficients cr.

The true parameter value is assumed to be (0, λ) in the (u, v)-coordinates for (7.4) and

(7.10). If we alter the true parameter value to arbitrary (u, v) with u �= 0, the expression

changes as well, and Φ−1(Pr{Ŵ ≤ ŵ}) is denoted as zc(ŵ; u, v, τ), which reduces to

zc(ŵ; 0, λ, τ) = zc(ŵ;λ, τ) when u = 0 and v = λ.

zc(ŵ; u, v, τ) is used for representing the bootstrap probabilities in particular. The

simple bootstrap probability is, for example, α̂0(y) = Pr{V̂ ∗ ≤ 0; y} = Φ(zc(0; û, v̂, 1))

with all cr = 0. The expression of zc(ŵ
∗; û, v̂, τ) is obtained from (7.10) by changing the

origin to η(û).

Lemma 5 Let Y ∗ be a replicate of Y distributed conditionally as Y ∗ ∼ f(y∗; y, τ) with

mean y and scale τ , and Ŵ ∗ be the corresponding modified signed distance. Let us denote
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the conditional distribution of Ŵ ∗ given y as Pr{Ŵ ∗ ≤ ŵ∗; y} = Φ(zc(ŵ
∗; û, v̂, τ)). Then

the expression of zc(ŵ
∗; û, v̂, τ) is obtained from (7.10) by replacing ŵ, λ, φppp, and d1 =

daa, respectively, with ŵ∗, v̂,

φ̂ppp ≈ φppp +
{

3φbpp(2dbc − φbcp) − 3
2
φcppφppp + φcppp

}
ûc, and(7.11)

d̂1 ≈ daa +
{

1
2
daaφcpp − dabφabc + 3eaac

}
ûc.(7.12)

Note that O(n−1) terms change only O(n−3/2). For example, d2 = (dab)2 would be replaced

with d̂2, but d̂2 ≈ d2.

7.5 Pivot statistic.

Although the exactly unbiased p-value may not exist in general, a third-order accurate

p-value can be derived under (1.3) and (1.4). Let Y ∗ ∼ f(y∗; η̂(y), 1) be a replicate

generated with mean η̂(y) instead of y, and α̂∞(y) be defined as the probability of the

corresponding signed distance V̂ ∗ being greater than or equal to the observed value v̂;

α̂∞(y) = Pr{V̂ ∗ ≥ v̂; η̂(y)}.

This is the exact p-value for the normal example of Section 2 and for the exponential

example of Section 4. We will show that α̂∞(y) is in fact third-order accurate under (1.3)

and (1.4).

First, ẑ∞(y) = −Φ−1(α̂∞(y)) is expressed by the zc-formula of Lemma 5. From the

definition, ẑ∞(y) = zc(v̂; û, 0, 1) with all cr = 0, and thus

ẑ∞(y) ≈ v̂ − (d̂1 + 1
6
φ̂ppp) + 1

6
φ̂pppv̂2(7.13)

+
{

(dab)2 − dabφabp + 1
6
daaφppp + 1

2
(φabp)2 + 1

2
(φapp)2 + 13

72
(φppp)2

− 1
4
φaapp − 1

8
φpppp

}
v̂ +

{
− 1

72
(φppp)2 + 1

24
φpppp

}
v̂3.

By comparing (7.13) with (7.8), we find that ẑ∞(y) can be expressed as ŵ with coefficients

c̄0 = −daa − 1
6
φppp, c̄1 = (dab)2 − dabφabp + 1

6
daaφppp + 1

2
(φabp)2 + 1

2
(φapp)2 + 13

72
(φppp)2 −

1
4
φaapp − 1

8
φpppp, c̄2 = 1

6
φppp, c̄3 = − 1

72
(φppp)2 + 1

24
φpppp, b̄c0 = −1

2
daaφcpp + dabφabc − 3eaac,

and b̄c2 = 1
2
φbpp(2dbc − φbcp) − 1

4
φcppφppp + 1

6
φcppp. Then the distribution function of ẑ∞(y)

is obtained immediately from Lemma 4 as shown below.

Lemma 6 Let us consider a statistic

ẑq(y) ≈ ẑ∞(y) + q0 + q1v̂ + q2v̂
2 + q3v̂

3 + ûcg
c(v̂),

where the coefficients are q0 = O(n−1/2), q1 = O(n−1), q2 = O(n−1/2), and q3 = O(n−1),

and gc(v̂) = O(n−1), c = 1, . . . , p−1, representing arbitrary polynomials of v̂. The index q
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of zq indicates the coefficients. Assuming (Û , V̂ ) ∼ f(û, v̂;λ, 1), the distribution function

of ẑq(y) is expressed as

Pr{ẑq(Y ) ≤ x;λ} ≈ Φ
[
x− λ− q0 − 1

3
φpppλ2 + 1

6
φpppλx− q2x

2(7.14)

+
{

(dab)2 + 1
8
(φapp)2 + 7

72
(φppp)2 − 1

24
φpppp − 1

6
φpppq0

}
λ

+
{
−q1 − 2q2(d

aa + 1
6
φppp − q0)

}
x+

{
−1

8
(φapp)2 + 1

24
φpppp

}
λ2x

+
{

1
3
φpppq2 + 2q2

2 − q3

}
x3 +

{
1
8
(φapp)2 + 1

18
(φppp)2 − 1

8
φpppp

}
λ3

+
{
− 5

72
(φppp)2 + 1

24
φpppp − 1

6
φpppq2

}
λx2

]
.

For λ = 0, the distribution function is Pr{ẑq(Y ) ≤ x; 0} ≈ Φ
[
x− q0 − q2x

2 +
{
−q1 −

2q2(d
aa+ 1

6
φppp−q0)

}
x+

{
1
3
φpppq2+2q2

2−q3
}
x3

]
. In particular, Pr{ẑ∞(Y ) ≤ x; 0} ≈ Φ(x),

and thus ẑ∞(y) is a third-order accurate pivot statistic. We obtain Pr{α̂∞(Y ) < α; η} ≈ α

for η ∈ ∂R, proving the third-order accuracy of α̂∞(y).

The reverse of the above statement also holds. α̂q(y) = Φ(−ẑq(y)) is a third-order

accurate p-value if and only if q0 ≈ q1 ≈ q2 ≈ q3 ≈ 0. If we confine our attention to α̂q(y)

defined only from v̂ and the geometric quantities dab, eabc, φij, φijk, and φijkl evaluated at

η̂(y), then ûcg
c(v̂) in ẑq(y) comes only from qr’s by the replacements shown in Lemma 5.

Thus α̂q(y) is a third-order accurate p-value if and only if α̂q(y) ≈ α̂∞(y). Similarly, α̂q(y)

is second-order accurate if and only if q0
.
= q2

.
= 0 and thus α̂q(y)

.
= α̂∞(y).

ẑ∞(y) is equivalent to other pivots in the literature up to O(n−1) terms. Under (1.1)

and (1.4), φijk = φijkl = 0, and thus (7.13) reduces to ẑ∞(y) ≈ v̂ − d̂1 + d̂2v̂, giving

(3.8), the pivot of of Efron (1985). Under (1.3), the modified signed likelihood ratio

(Barndorff-Nielsen 1986, Barndorff-Nielsen and Cox 1994) has been known as a third-order

accurate pivot, and it is expressed as R∗ = R+(1/R) log (U/R) in the notation of Severini

(2000, p. 251), where U is defined using the log-likelihood derivatives. A straightforward

calculation shows that U ≈ v̂ − d̂1v̂
2 + {1

2
(daa)2 + dabdab − 1

4
φaapp − dabφabp + 1

2
(φabp)2 +

1
2
(φapp)2 + 1

8
(φppp)2 − 1

12
φpppp}v̂3, and that R∗ ≈ ẑ∞(y) in the moderate deviation region.

7.6 Accuracy of the bootstrap probability.

Since the event Y ∗ ∈ R is equivalent to the event V̂ ∗ ≤ 0, the z-value of the boot-

strap probability with scale τ is expressed by the zc-formula of Lemma 5; z̃1(y, τ) =

−zc(0; û, v̂, τ) with all cr = 0. From (7.10), we obtain a refined version of (4.8) erring only
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O(n−3/2)

z̃1(y, τ) ≈ τ−1

[
v̂ + 1

3
φ̂pppv̂2 −

{
1
8
(φapp)2 + 1

18
(φppp)2 − 1

8
φpppp

}
v̂3

]
(7.15)

+τ

[
(d̂1 + 1

6
φ̂ppp) −

{
(dab)2 − 1

6
daaφppp + 1

8
(φapp)2 + 5

72
(φppp)2 − 1

24
φpppp

}
v̂

]
.

It follows from (7.15) that τ z̃1(y, τ) is expressed as ŵ, and thus τ z̃1(y, τ) ≈ ẑq(y) by

choosing the coefficients appropriately. They are c0 = (daa + 1
6
φppp)τ 2, c1 = (−(dab)2 −

1
2
daaφppp − 1

8
(φapp)2 − 13

72
(φppp)2 + 1

24
φpppp)τ 2, c2 = 1

3
φppp, and c3 = −1

8
(φapp)2 − 5

18
(φppp)2 +

1
8
φpppp for ŵ, or equivalently q0 = (1 + τ 2)(daa + 1

6
φppp), q1 = −(1 + τ 2)(dab)2 + dabφabp +

1
4
φaapp− 1

2
(φabp)2− 1

8
(4+τ 2)(φapp)2+ 1

6
(−1+τ 2)daaφppp− 1

72
(13+5τ 2)(φppp)2+ 1

24
(3+τ 2)φpppp,

q2 = 1
6
φppp, q3 = −1

8
(φapp)2 − 1

24
(φppp)2 + 1

12
φpppp for ẑq(y). The distribution function of

τ z̃(y, τ) is obtained from (7.10) or (7.14). In particular, the distribution function of

ẑ0(y) = z̃1(y, 1) under λ = 0, τ = 1 is

Pr{ẑ0(Y ) ≤ x; 0} ≈ Φ
[
x− (2daa + 1

3
φppp) − 1

6
φpppx2(7.16)

+
{

2(dab)2 − dabφabp + 1
3
daaφppp + 1

2
(φabp)2 + 5

8
(φapp)2 + 11

36
(φppp)2

− 1
4
φaapp − 1

6
φpppp

}
x+

{
11
72

(φppp)2 + 1
8
(φapp)2 − 1

12
φpppp

}
x3

]
,

showing the first-order accuracy of α̂0(y).

Remark A of Efron and Tibshirani (1998) discusses a calibrated bootstrap probability,

denoted α̂double(y) here, using the double bootstrap of Hall (1992). Similarly to the two-

level bootstrap, thousands of Y ∗ are generated around η̂(y). Then α̂0(y
∗) is computed for

each y∗. The expression of ẑdouble(y) = Φ−1 [Pr{ẑ0(Y ∗) ≤ ẑ0(y); η̂(y)}] is obtained from

(7.16) by the replacements of Lemma 5, and a straightforward calculation shows that

ẑdouble(y) ≈ ẑ∞(y), proving the third-order accuracy of α̂double(y).

7.7 Accuracy of the two-level bootstrap.

The expression of ẑ0(y) is obtained from (7.15) by letting τ = 1, and ẑ0(η̂(y)) ≈ d̂1 + 1
6
φ̂ppp

is obtained from it by letting v̂ = 0. By substituting these expressions as well as â =

−1
6
φ̂ppp for those in (2.3), we find that ẑabc(y) is expressed as ŵ, or equivalently ẑq(y)

with coefficients q0 = q2 = 0, q1 = −2(dab)2 + 1
4
φaapp + dabφabp − 1

2
(φabp)2 − 5

8
(φapp)2 −

1
4
(φppp)2 + 1

6
φpppp, and q3 = −1

8
(φapp)2 − 1

8
(φppp)2 + 1

12
φpppp. The distribution function is

then obtained from Lemma 6. For λ = 0, it becomes

(7.17) Pr{ẑabc(Y ) ≤ x; 0} ≈ Φ(x− q1x− q3x
3),

showing the second-order accuracy of α̂abc(y).
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For the exponential example of Section 4, p = 1, φ111 = −2/
√
n, φ1111 = 6/n, and all

the other quantities in q1 and q3 are zero. Therefore, q1 = q3 = 0, and ẑabc(y) turns out

to be third-order accurate, explaining the high accuracy of α̂abc(y) observed in Table 2.

7.8 Accuracy of the multistep-multiscale bootstrap.

Using the expressions (7.4) and (7.15), the expression of z̃2(y, τ1, τ2) is obtained by the

integration

(7.18) z̃2(y, τ1, τ2) = Φ−1
{∫

Φ(z̃1(y
∗, τ2))f(y∗; y, τ1) dy∗

}
.

By repeating the same integration using z̃2(y
∗, τ2, τ3) instead of z̃1(y

∗, τ2), we obtain the

expression of z̃3(y, τ1, τ2, τ3) as given below.

Lemma 7 Let us define the following six geometric quantities using the derivatives eval-

uated at η = 0; γ1 = λ + 1
3
λ2φppp + λ3

{
−1

8
(φapp)2 − 1

18
(φppp)2 + 1

8
φpppp

}
, γ2 =

λ
{
−daa − 1

6
φppp

}
+ λ2

{
(dab)2 − 1

2
daaφppp + 1

8
(φapp)2 + 1

72
(φppp)2 − 1

24
φpppp

}
, γ3 =

−1
6
λφppp + λ2

{
1
4
(φapp)2 + 1

9
(φppp)2 − 1

8
φpppp

}
, γ4 = λ2

{
−dabφabp + 1

3
daaφppp + 1

2
(φabp)2 +

1
2
(φapp)2 + 2

9
(φppp)2 − 1

4
φaapp − 1

6
φpppp

}
, γ5 = λ2

{
−1

8
(φapp)2 − 1

8
(φppp)2 + 1

12
φpppp

}
, and

γ6 = λ2
{
−1

8
(φapp)2− 1

8
(φppp)2 + 1

24
φpppp

}
. Those evaluated at η̂(y), denoted γ̂1, . . . , γ̂6, are

obtained by replacing λ, φppp, and daa, respectively, with v̂, (7.11), and (7.12) as shown

in Lemma 5. Then we have

(7.19) z̃3(y, τ1, τ2, τ3) ≈ ζ3(γ̂1, γ̂2, γ̂3, γ̂4, γ̂5, γ̂6, τ1, τ2, τ3)

using the ζ3-function of (5.5). Since (7.19) errs only O(n−3/2) for any values of (τ1, τ2, τ3),

the nonlinear regression for three-step multiscale bootstrap probabilities in Section 5 esti-

mates γ̂i’s up to O(n−1) terms.

If we define ẑ3(y) of (5.6) using the γ̂i’s defined above, we can easily verify

(7.20) ẑ3(y) ≈ ẑ∞(y)

by comparing (5.6) with (7.13). This proves the third-order accuracy of α̂3(y) under (1.3)

and (1.4).

For the multivariate normal model of (1.1), φ(η) = ‖η‖2/2 and thus φijk = φijkl = 0.

This implies γ3 = · · · = γ6 = 0, proving the third-order accuracy of α̂1(y) and α̂2(y) under

(1.1) and (1.4).
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v

Figure 1: Multiscale bootstrap. The three circles with dashed lines indicate the condi-

tional distributions of the bootstrap replicates with mean y and scales τ = 1/
√

2, 1,
√

2.

In this particular configuration, the bootstrap probability may increase by halving the

sample size to alter τ = 1 to
√

2, and may decrease by doubling the sample size to alter

τ = 1 to 1/
√

2.
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Figure 2: Plots of the z-value of the multiscale bootstrap probability along the inverse

of the scale τ for the normal example (p = 4) of Section 2 and the exponential example

(p = 1) of Section 4. Parameter values are chosen so that the exact p-value is either

0.05 (left panel) or 0.95 (right panel). The curves are drawn by the regression model of

eq. (3.3).
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Table 1:

Bootstrap probabilities and corrected p-values

symbol section description

α̃1(y, τ1) 2 bootstrap probability

α̂∞(y) 2 exact p-value ∗

α̂0(y) 2 bootstrap probability (τ1 = 1)

α̂abc(y) 2 two-level bootstrap corrected p-value

α̂1(y) 3 multiscale bootstrap corrected p-value

α̃2(y, τ1, τ2) 4 two-step bootstrap probability

α̂2(y) 4 two-step multiscale bootstrap corrected p-value

α̃3(y, τ1, τ2, τ3) 5 three-step bootstrap probability

α̂3(y) 5 three-step multiscale bootstrap corrected p-value

∗ A third-order accurate p-value in Section 7.
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Table 2:

p-values in percent (standard error) for the examples ∗

ridge regression

n α̂0 α̂abc α̂1 α̂2 α̂3 α̂2 α̂3

normal distribution (α̂∞ = 5.00)

10 0.85 7.75 5.29 (0.61) 5.85 (1.81) 7.03 (8.04) 5.67 (1.03) 6.04 (1.13)

100 2.73 5.25 5.01 (0.37) 5.05 (1.16) 5.08 (2.93) 5.04 (0.78) 5.06 (0.97)

1000 4.12 5.03 5.00 (0.32) 5.00 (1.05) 5.00 (2.22) 5.00 (0.72) 5.00 (0.89)

exponential distribution (α̂∞ = 5.00)

10 11.15 5.00 7.53 (0.31) 5.28 (0.77) 5.09 (0.95) 5.77 (0.60) 5.13 (0.68)

100 6.73 5.00 5.90 (0.30) 5.03 (0.94) 5.01 (1.50) 5.25 (0.67) 5.04 (0.81)

1000 5.52 5.00 5.29 (0.30) 5.00 (0.98) 5.00 (1.82) 5.08 (0.69) 5.01 (0.80)

normal distribution (α̂∞ = 95.00)

10 67.84 92.33 95.26 (0.18) 95.20 (0.41) 95.02 (0.51) 95.21 (0.34) 95.07 (0.37)

100 90.65 94.74 95.02 (0.24) 95.07 (0.84) 95.09 (1.28) 95.06 (0.60) 95.07 (0.70)

1000 93.91 94.97 95.00 (0.28) 95.00 (0.95) 95.00 (1.72) 95.00 (0.67) 95.00 (0.81)

exponential distribution (α̂∞ = 95.00)

10 98.78 95.00 97.99 (0.24) 94.48 (1.31) 96.12 (7.39) 95.60 (0.81) 96.48 (0.56)

100 96.49 95.00 95.95 (0.28) 94.97 (1.06) 95.01 (2.71) 95.24 (0.72) 95.14 (0.82)

1000 95.50 95.00 95.30 (0.29) 95.00 (1.02) 95.00 (2.19) 95.08 (0.70) 95.02 (0.81)

∗ The bootstrap calculation is replaced by integration numerically, and hence the number

of bootstrap replicates is regarded as B = ∞. The standard errors in parentheses are

calculated for the case of B = 104 by the local linearization of the nonlinear regression

(Draper and Smith 1998). All the combinations of τ 2
1 ∈ {10

3
, 10

6
, 10

10
, 10

15
, 10

21
}, τ 2

2 ∈ {10
6
, 10

15
},

τ 2
3 ∈ {10

6
, 10

15
} are used for the scales. The total numbers of bootstrap replicates are 5B,

15B, and 35B, respectively, for α̂1, α̂2, and α̂3. For the ridge regression, the penalty

weights are ω1 = ω2 = 0, and ω3 = · · · = ω6 = 0.01.
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