In the below, we will calculate =
.
z1v8=z1[v8[z,v0,tau1],tau2]. This is regarded as a polynomial of z, and then intfz will be applied to z1v8.
![[Graphics:../Images/index_gr_1599.gif]](../Images/index_gr_1599.gif)
foo11 is the O(1) term
![[Graphics:../Images/index_gr_1601.gif]](../Images/index_gr_1601.gif)
![[Graphics:../Images/index_gr_1603.gif]](../Images/index_gr_1603.gif)
We may make replacements b->z1v8ab[[1]], a->z1v8ab[[2]] later for the normal integration with intfxg[a,b,n], i.e., z1v8o0=az+b.
Get the dd coefficients and store them in z1v8dd
![[Graphics:../Images/index_gr_1605.gif]](../Images/index_gr_1605.gif)
![[Graphics:../Images/index_gr_1607.gif]](../Images/index_gr_1607.gif)
Now the integration is =
. .
![[Graphics:../Images/index_gr_1611.gif]](../Images/index_gr_1611.gif)
Check if z2 reduces to z1 when one of the scales is zero
![[Graphics:../Images/index_gr_1613.gif]](../Images/index_gr_1613.gif)
![[Graphics:../Images/index_gr_1615.gif]](../Images/index_gr_1615.gif)