The normal distribution function Φ[x], the quantile function , and the normal density function φ[x].
![[Graphics:../Images/index_gr_1555.gif]](../Images/index_gr_1555.gif)
First, we will calculate the following intxfp[a,b]
![[Graphics:../Images/index_gr_1557.gif]](../Images/index_gr_1557.gif)
Mathematica does not calculate intxfp, so we consider change of variables. First rewrite intxfp as follows.
![[Graphics:../Images/index_gr_1559.gif]](../Images/index_gr_1559.gif)
Then, {x1,x2} is transformed to {y1,y2}.
![[Graphics:../Images/index_gr_1561.gif]](../Images/index_gr_1561.gif)
The range of the integration is now expressed as
![[Graphics:../Images/index_gr_1562.gif]](../Images/index_gr_1562.gif)
![[Graphics:../Images/index_gr_1565.gif]](../Images/index_gr_1565.gif)
![[Graphics:../Images/index_gr_1567.gif]](../Images/index_gr_1567.gif)
![[Graphics:../Images/index_gr_1569.gif]](../Images/index_gr_1569.gif)
![[Graphics:../Images/index_gr_1572.gif]](../Images/index_gr_1572.gif)
![[Graphics:../Images/index_gr_1573.gif]](../Images/index_gr_1573.gif)
![[Graphics:../Images/index_gr_1575.gif]](../Images/index_gr_1575.gif)
Finally we consider some asymptotic expansions.
![[Graphics:../Images/index_gr_1577.gif]](../Images/index_gr_1577.gif)
Thus, F[x+oy] = F[x] + f[x] ()=F[x] + f[x] * expandF[x+oy,x], where x=Coefficient[x+oy,o,0].
![[Graphics:../Images/index_gr_1580.gif]](../Images/index_gr_1580.gif)
Next, note that
![[Graphics:../Images/index_gr_1581.gif]](../Images/index_gr_1581.gif)
Thus, Q[F[x]+f[x] o y] = =expandQ[x,y].
![[Graphics:../Images/index_gr_1584.gif]](../Images/index_gr_1584.gif)
Combining these asymptotic expansions, we obtain the following integration. Let func[z]=(az+b) + rem[z], where rem[z]=is of order
We would like to calculate intfz=Q[
.
The integrand F[func[z]]f[z] is expandF[func[z],az+b]f[z] = . We denote
. The coefficients d's are obtained from a,b, and c's.
![[Graphics:../Images/index_gr_1590.gif]](../Images/index_gr_1590.gif)
Now the integration is intfz=Q[. Since
, and
, we obtain
. Using expandQ, this becomes intfz=
.
![[Graphics:../Images/index_gr_1596.gif]](../Images/index_gr_1596.gif)
Now, the integration function may be written as intfz=dd2int[a,b,func2dd[a,b,rem,z],z];