We define This is the bootstrap probability for y=η(0,v). The z-value is
. This becomes z1[v,tau1]=-zc[0,{0,0,0,0},v,tau1]. For a general y=η(u,v) with u~=0, the expression changes only by the linear term in u and the difference is only
![[Graphics:../Images/index_gr_1462.gif]](../Images/index_gr_1462.gif)
The following w1=tau1 z1[v,tau1] is regarded as another w.
![[Graphics:../Images/index_gr_1464.gif]](../Images/index_gr_1464.gif)
Here we obtain the coefficients cc for w1. The scale tau1 is specified instead of tau.
![[Graphics:../Images/index_gr_1466.gif]](../Images/index_gr_1466.gif)
![[Graphics:../Images/index_gr_1468.gif]](../Images/index_gr_1468.gif)
The distribution function of w1 under v0 and scale tau is .
![[Graphics:../Images/index_gr_1471.gif]](../Images/index_gr_1471.gif)
We can use the function zq2cc to obtain ccw1 directly from w1[v].
![[Graphics:../Images/index_gr_1473.gif]](../Images/index_gr_1473.gif)
We can do the same as above in another way though zq.
![[Graphics:../Images/index_gr_1475.gif]](../Images/index_gr_1475.gif)
![[Graphics:../Images/index_gr_1477.gif]](../Images/index_gr_1477.gif)
The usual bootstrap probability is defined from with tau=1. We denote it as
. The corresponding z-value is denoted by
![[Graphics:../Images/index_gr_1482.gif]](../Images/index_gr_1482.gif)
The distribution function of is denoted by
.
![[Graphics:../Images/index_gr_1486.gif]](../Images/index_gr_1486.gif)
Under v0=0, zfz0 becomes
![[Graphics:../Images/index_gr_1488.gif]](../Images/index_gr_1488.gif)