![[Graphics:../Images/index_gr_1378.gif]](../Images/index_gr_1378.gif)
![[Graphics:../Images/index_gr_1380.gif]](../Images/index_gr_1380.gif)
![[Graphics:../Images/index_gr_1382.gif]](../Images/index_gr_1382.gif)
(-v0 + w + o*(-cr[0] + w^2*(-cr[2] + tp3[9, 9, 9]/6) -
(v0^2*tp3[9, 9, 9])/3 + (v0*w*tp3[9, 9, 9])/6) +
o^2*(-(v0*cr[0]*tp3[9, 9, 9])/6 +
w*(-cr[1] - (cr[0]*tp3[9, 9, 9])/3 +
v0^2*(-(tp3[9, 9, al1]*tp3[9, 9, au1])/8 +
tp4[9, 9, 9, 9]/24)) + v0^3*(tp3[9, 9, 9]^2/18 +
(tp3[9, 9, al1]*tp3[9, 9, au1])/8 - tp4[9, 9, 9, 9]/8) +
v0*w^2*(-(cr[2]*tp3[9, 9, 9])/6 - tp3[9, 9, 9]^2/24 +
tp4[9, 9, 9, 9]/24) + w^3*(-cr[3] - (cr[2]*tp3[9, 9, 9])/3 -
tp3[9, 9, 9]^2/72 + tp4[9, 9, 9, 9]/24) +
ru0[al1]*(v0^2*((tp3[9, 9, 9]*tp3[9, 9, au1])/2 -
2*td[al2, au1]*tp3[9, 9, au2] + tp3[9, 9, au2]*
tp3[9, al2, au1] - tp4[9, 9, 9, au1]/3) +
v0*w*(-(tp3[9, 9, 9]*tp3[9, 9, au1])/4 +
td[al2, au1]*tp3[9, 9, au2] -
(tp3[9, 9, au2]*tp3[9, al2, au1])/2 + tp4[9, 9, 9, au1]/
6) + w^2*(-(tp3[9, 9, 9]*tp3[9, 9, au1])/4 +
td[al2, au1]*tp3[9, 9, au2] -
(tp3[9, 9, au2]*tp3[9, al2, au1])/2 + tp4[9, 9, 9, au1]/
6))))/tau + tau*(o*(-td[al1, au1] - tp3[9, 9, 9]/6) +
o^2*(v0*(td[al1, au2]*td[al2, au1] - (td[al1, au1]*tp3[9, 9, 9])/
6 + (5*tp3[9, 9, 9]^2)/72 + (tp3[9, 9, al1]*tp3[9, 9, au1])/
8 - tp4[9, 9, 9, 9]/24) + ru0[al1]*(-3*te[al2, au1, au2] -
(td[al2, au2]*tp3[9, 9, au1])/2 +
(tp3[9, 9, 9]*tp3[9, 9, au1])/4 - td[al2, au1]*
tp3[9, 9, au2] + (tp3[9, 9, au2]*tp3[9, al2, au1])/2 +
td[au2, au3]*tp3[al2, al3, au1] - tp4[9, 9, 9, au1]/6) +
w*(td[al1, au2]*td[al2, au1] + (td[al1, au1]*tp3[9, 9, 9])/6 +
(13*tp3[9, 9, 9]^2)/72 + (tp3[9, 9, al1]*tp3[9, 9, au1])/2 -
td[au1, au2]*tp3[9, al1, al2] +
(tp3[9, al1, au2]*tp3[9, al2, au1])/2 - tp4[9, 9, 9, 9]/8 -
tp4[9, 9, al1, au1]/4)))
We confirm that zformula depends on only linearly, and the term is only
![[Graphics:../Images/index_gr_1385.gif]](../Images/index_gr_1385.gif)