In the below, the tensor symbols are replaced by regular symbols.
![[Graphics:../Images/index_gr_1123.gif]](../Images/index_gr_1123.gif)
![[Graphics:../Images/index_gr_1124.gif]](../Images/index_gr_1124.gif)
![[Graphics:../Images/index_gr_1125.gif]](../Images/index_gr_1125.gif)
![[Graphics:../Images/index_gr_1126.gif]](../Images/index_gr_1126.gif)
![[Graphics:../Images/index_gr_1127.gif]](../Images/index_gr_1127.gif)
![[Graphics:../Images/index_gr_1128.gif]](../Images/index_gr_1128.gif)
![[Graphics:../Images/index_gr_1129.gif]](../Images/index_gr_1129.gif)
![[Graphics:../Images/index_gr_1130.gif]](../Images/index_gr_1130.gif)
![[Graphics:../Images/index_gr_1131.gif]](../Images/index_gr_1131.gif)
The following expression of "zform" is equivalent to "zformula", but without the tensor symbols so that we can use it without MathTensor.
![[Graphics:../Images/index_gr_1132.gif]](../Images/index_gr_1132.gif)
![[Graphics:../Images/index_gr_1134.gif]](../Images/index_gr_1134.gif)
-v0 + w + o*(-c0 - Daa - P999/6 - (P999*v0^2)/3 + (P999*v0*w)/6 +
(-c2 + P999/6)*w^2) +
o^2*((Dab2 - (c0*P999)/6 - (Daa*P999)/6 + (5*P999^2)/72 -
P9999/24 + P99a2/8)*v0 + (P999^2/18 - P9999/8 + P99a2/8)*
v0^3 + (-c1 + Dab2 - DabP9ab - (c0*P999)/3 + (Daa*P999)/6 +
(13*P999^2)/72 - P9999/8 + P99a2/2 - P99aa/4 + P9ab2/2 +
(P9999/24 - P99a2/8)*v0^2)*w +
(-(c2*P999)/6 - P999^2/24 + P9999/24)*v0*w^2 +
(-c3 - (c2*P999)/3 - P999^2/72 + P9999/24)*w^3)