We apply cfexpw to cumulantw.
![[Graphics:../Images/index_gr_1060.gif]](../Images/index_gr_1060.gif)
![[Graphics:../Images/index_gr_1061.gif]](../Images/index_gr_1061.gif)
![[Graphics:../Images/index_gr_1062.gif]](../Images/index_gr_1062.gif)
![[Graphics:../Images/index_gr_1063.gif]](../Images/index_gr_1063.gif)
![[Graphics:../Images/index_gr_1064.gif]](../Images/index_gr_1064.gif)
![[Graphics:../Images/index_gr_1065.gif]](../Images/index_gr_1065.gif)
![[Graphics:../Images/index_gr_1066.gif]](../Images/index_gr_1066.gif)
The following zformula is defined as .
![[Graphics:../Images/index_gr_1068.gif]](../Images/index_gr_1068.gif)
![[Graphics:../Images/index_gr_1070.gif]](../Images/index_gr_1070.gif)
-v0 + w + o*(-cr[0] - td[al1, au1] +
w^2*(-cr[2] + tp3[9, 9, 9]/6) - tp3[9, 9, 9]/6 -
(v0^2*tp3[9, 9, 9])/3 + (v0*w*tp3[9, 9, 9])/6) +
o^2*(v0^3*(tp3[9, 9, 9]^2/18 + (tp3[9, 9, al1]*tp3[9, 9, au1])/8 -
tp4[9, 9, 9, 9]/8) + v0*(td[al1, au2]*td[al2, au1] -
(cr[0]*tp3[9, 9, 9])/6 - (td[al1, au1]*tp3[9, 9, 9])/6 +
(5*tp3[9, 9, 9]^2)/72 + (tp3[9, 9, al1]*tp3[9, 9, au1])/8 -
tp4[9, 9, 9, 9]/24) + v0*w^2*(-(cr[2]*tp3[9, 9, 9])/6 -
tp3[9, 9, 9]^2/24 + tp4[9, 9, 9, 9]/24) +
w^3*(-cr[3] - (cr[2]*tp3[9, 9, 9])/3 - tp3[9, 9, 9]^2/72 +
tp4[9, 9, 9, 9]/24) + w*(-cr[1] + td[al1, au2]*td[al2, au1] -
(cr[0]*tp3[9, 9, 9])/3 + (td[al1, au1]*tp3[9, 9, 9])/6 +
(13*tp3[9, 9, 9]^2)/72 + (tp3[9, 9, al1]*tp3[9, 9, au1])/2 -
td[au1, au2]*tp3[9, al1, al2] +
(tp3[9, al1, au2]*tp3[9, al2, au1])/2 +
v0^2*(-(tp3[9, 9, al1]*tp3[9, 9, au1])/8 +
tp4[9, 9, 9, 9]/24) - tp4[9, 9, 9, 9]/8 -
tp4[9, 9, al1, au1]/4))
Get the coefficients of for zformula.
![[Graphics:../Images/index_gr_1072.gif]](../Images/index_gr_1072.gif)
![[Graphics:../Images/index_gr_1073.gif]](../Images/index_gr_1073.gif)
![[Graphics:../Images/index_gr_1076.gif]](../Images/index_gr_1076.gif)
![[Graphics:../Images/index_gr_1079.gif]](../Images/index_gr_1079.gif)
![[Graphics:../Images/index_gr_1082.gif]](../Images/index_gr_1082.gif)
![[Graphics:../Images/index_gr_1085.gif]](../Images/index_gr_1085.gif)
![[Graphics:../Images/index_gr_1088.gif]](../Images/index_gr_1088.gif)
![[Graphics:../Images/index_gr_1091.gif]](../Images/index_gr_1091.gif)
![[Graphics:../Images/index_gr_1094.gif]](../Images/index_gr_1094.gif)
![[Graphics:../Images/index_gr_1097.gif]](../Images/index_gr_1097.gif)
![[Graphics:../Images/index_gr_1100.gif]](../Images/index_gr_1100.gif)
![[Graphics:../Images/index_gr_1103.gif]](../Images/index_gr_1103.gif)
![[Graphics:../Images/index_gr_1106.gif]](../Images/index_gr_1106.gif)
![[Graphics:../Images/index_gr_1109.gif]](../Images/index_gr_1109.gif)
![[Graphics:../Images/index_gr_1112.gif]](../Images/index_gr_1112.gif)
![[Graphics:../Images/index_gr_1115.gif]](../Images/index_gr_1115.gif)
![[Graphics:../Images/index_gr_1118.gif]](../Images/index_gr_1118.gif)
![[Graphics:../Images/index_gr_1121.gif]](../Images/index_gr_1121.gif)