Consider the normal density with mean v0+t and variance 1 for w. The log of the density is foo60.
![[Graphics:../Images/index_gr_992.gif]](../Images/index_gr_992.gif)
Then,we define foo61 by This foo61 is a polynomial function of w.
![[Graphics:../Images/index_gr_994.gif]](../Images/index_gr_994.gif)
Get the coefficients of 's for foo61, and store them in foo62 below.
![[Graphics:../Images/index_gr_997.gif]](../Images/index_gr_997.gif)
![[Graphics:../Images/index_gr_998.gif]](../Images/index_gr_998.gif)
![[Graphics:../Images/index_gr_1000.gif]](../Images/index_gr_1000.gif)
![[Graphics:../Images/index_gr_1002.gif]](../Images/index_gr_1002.gif)
![[Graphics:../Images/index_gr_1004.gif]](../Images/index_gr_1004.gif)
![[Graphics:../Images/index_gr_1006.gif]](../Images/index_gr_1006.gif)
![[Graphics:../Images/index_gr_1008.gif]](../Images/index_gr_1008.gif)
Apply "logeexppoly" to foo62. We get foo64=
![[Graphics:../Images/index_gr_1011.gif]](../Images/index_gr_1011.gif)
![[Graphics:../Images/index_gr_1012.gif]](../Images/index_gr_1012.gif)
![[Graphics:../Images/index_gr_1013.gif]](../Images/index_gr_1013.gif)
![[Graphics:../Images/index_gr_1014.gif]](../Images/index_gr_1014.gif)
![[Graphics:../Images/index_gr_1015.gif]](../Images/index_gr_1015.gif)
![[Graphics:../Images/index_gr_1016.gif]](../Images/index_gr_1016.gif)
![[Graphics:../Images/index_gr_1017.gif]](../Images/index_gr_1017.gif)
Get the coefficients of ,
and multiply
so that we get
.
![[Graphics:../Images/index_gr_1022.gif]](../Images/index_gr_1022.gif)
![[Graphics:../Images/index_gr_1023.gif]](../Images/index_gr_1023.gif)
should be zero.
![[Graphics:../Images/index_gr_1026.gif]](../Images/index_gr_1026.gif)
![[Graphics:../Images/index_gr_1028.gif]](../Images/index_gr_1028.gif)
![[Graphics:../Images/index_gr_1031.gif]](../Images/index_gr_1031.gif)
![[Graphics:../Images/index_gr_1034.gif]](../Images/index_gr_1034.gif)
![[Graphics:../Images/index_gr_1037.gif]](../Images/index_gr_1037.gif)
![[Graphics:../Images/index_gr_1040.gif]](../Images/index_gr_1040.gif)
![[Graphics:../Images/index_gr_1042.gif]](../Images/index_gr_1042.gif)
![[Graphics:../Images/index_gr_1043.gif]](../Images/index_gr_1043.gif)
{v0 + o*(cr[0] + cr[2] + v0^2*cr[2] + td[al1, au1]) +
o^2*(v0^3*(2*cr[2]^2 + cr[3]) + v0*(cr[1] + 2*cr[0]*cr[2] +
6*cr[2]^2 + 3*cr[3] - 2*td[al1, au2]*td[al2, au1] +
td[al1, au1]*(2*cr[2] - tp3[9, 9, 9]/2) -
cr[2]*tp3[9, 9, 9] - (5*tp3[9, 9, al1]*tp3[9, 9, au1])/8 +
td[au1, au2]*tp3[9, al1, al2] -
(tp3[9, al1, au2]*tp3[9, al2, au1])/2 + tp4[9, 9, al1, au1]/
4)), 1 + o*v0*(4*cr[2] - tp3[9, 9, 9]) +
o^2*(2*cr[1] + 4*cr[0]*cr[2] + 14*cr[2]^2 + 6*cr[3] -
2*td[al1, au2]*td[al2, au1] + td[al1, au1]*
(4*cr[2] - tp3[9, 9, 9]) - 2*cr[2]*tp3[9, 9, 9] -
tp3[9, 9, al1]*tp3[9, 9, au1] + 2*td[au1, au2]*
tp3[9, al1, al2] - tp3[9, al1, au2]*tp3[9, al2, au1] +
v0^2*(16*cr[2]^2 + 6*cr[3] - 4*cr[2]*tp3[9, 9, 9] +
tp3[9, 9, 9]^2 + (tp3[9, 9, al1]*tp3[9, 9, au1])/4 -
tp4[9, 9, 9, 9]/2) + tp4[9, 9, al1, au1]/2),
o*(6*cr[2] - tp3[9, 9, 9]) + o^2*v0*(60*cr[2]^2 + 18*cr[3] -
18*cr[2]*tp3[9, 9, 9] + 3*tp3[9, 9, 9]^2 - tp4[9, 9, 9, 9]),
o^2*(96*cr[2]^2 + 24*cr[3] - 24*cr[2]*tp3[9, 9, 9] +
3*tp3[9, 9, 9]^2 - tp4[9, 9, 9, 9])}