First, we obtain the joint density of (u,w) i.e., f(u,w|v0)=f(u,v(w,u)|v0)J from the joint density of (u,v), the transformation v=v(w,u), and the Jacobian.
![[Graphics:../Images/index_gr_938.gif]](../Images/index_gr_938.gif)
This is the log of the density. logdensityuw = log f(u,w|v0).
![[Graphics:../Images/index_gr_939.gif]](../Images/index_gr_939.gif)
This is the log of the standard multivariate normal density in dim-1 dimension.
![[Graphics:../Images/index_gr_941.gif]](../Images/index_gr_941.gif)
Get the coefficients of the polynomials of from
.
![[Graphics:../Images/index_gr_945.gif]](../Images/index_gr_945.gif)
![[Graphics:../Images/index_gr_946.gif]](../Images/index_gr_946.gif)
constant term in terms of u
![[Graphics:../Images/index_gr_948.gif]](../Images/index_gr_948.gif)
coefficient of
![[Graphics:../Images/index_gr_951.gif]](../Images/index_gr_951.gif)
coefficient of
![[Graphics:../Images/index_gr_954.gif]](../Images/index_gr_954.gif)
coefficient of
![[Graphics:../Images/index_gr_957.gif]](../Images/index_gr_957.gif)
coefficient of
![[Graphics:../Images/index_gr_960.gif]](../Images/index_gr_960.gif)
We now calculate as an application of "logeexppoly" to foo52. It is denoted by logdensityw.
![[Graphics:../Images/index_gr_963.gif]](../Images/index_gr_963.gif)
![[Graphics:../Images/index_gr_964.gif]](../Images/index_gr_964.gif)
![[Graphics:../Images/index_gr_965.gif]](../Images/index_gr_965.gif)
![[Graphics:../Images/index_gr_966.gif]](../Images/index_gr_966.gif)
![[Graphics:../Images/index_gr_967.gif]](../Images/index_gr_967.gif)
![[Graphics:../Images/index_gr_968.gif]](../Images/index_gr_968.gif)
![[Graphics:../Images/index_gr_969.gif]](../Images/index_gr_969.gif)
This is
![[Graphics:../Images/index_gr_971.gif]](../Images/index_gr_971.gif)
![[Graphics:../Images/index_gr_973.gif]](../Images/index_gr_973.gif)
-v0^2/2 - Log[2*Pi]/2 + w^3*(-(o^2*v0*cr[3]) +
o*(cr[2] - tp3[9, 9, 9]/6)) +
o*(v0*(-cr[0] - td[al1, au1]) - (v0^3*tp3[9, 9, 9])/3) +
o^2*w^4*(-cr[2]^2/2 + cr[3] + (cr[2]*tp3[9, 9, 9])/2 -
tp4[9, 9, 9, 9]/24) +
w*(v0 + o*(cr[0] - 2*cr[2] + td[al1, au1] + tp3[9, 9, 9]/2 +
(v0^2*tp3[9, 9, 9])/2) +
o^2*(v0^3*(-(tp3[9, 9, al1]*tp3[9, 9, au1])/4 +
tp4[9, 9, 9, 9]/6) +
v0*(-cr[1] + (td[al1, au1]*tp3[9, 9, 9])/2 +
(3*tp3[9, 9, al1]*tp3[9, 9, au1])/8 -
td[au1, au2]*tp3[9, al1, al2] +
(tp3[9, al1, au2]*tp3[9, al2, au1])/2 - tp4[9, 9, al1, au1]/
4))) + w^2*(-1/2 - o*v0*cr[2] +
o^2*(cr[1] - cr[0]*cr[2] - 2*cr[2]^2 - 3*cr[3] -
cr[2]*td[al1, au1] - td[al1, au2]*td[al2, au1] +
(cr[0]*tp3[9, 9, 9])/2 - (cr[2]*tp3[9, 9, 9])/2 -
tp3[9, 9, 9]^2/4 - (tp3[9, 9, al1]*tp3[9, 9, au1])/2 +
v0^2*(-(cr[2]*tp3[9, 9, 9])/2 +
(tp3[9, 9, al1]*tp3[9, 9, au1])/8) +
td[au1, au2]*tp3[9, al1, al2] -
(tp3[9, al1, au2]*tp3[9, al2, au1])/2 + tp4[9, 9, 9, 9]/4 +
tp4[9, 9, al1, au1]/4)) +
o^2*(-cr[0]^2/2 - cr[1] - cr[0]*td[al1, au1] +
td[al1, au2]*td[al2, au1] - (td[al1, au1]*td[al2, au2])/2 -
(cr[0]*tp3[9, 9, 9])/2 + tp3[9, 9, 9]^2/6 +
v0^2*(td[al1, al2]*td[au1, au2] - (cr[0]*tp3[9, 9, 9])/2 -
(td[al1, au1]*tp3[9, 9, 9])/2) +
(tp3[9, 9, al1]*tp3[9, 9, au1])/2 -
td[au1, au2]*tp3[9, al1, al2] +
(tp3[9, al1, au2]*tp3[9, al2, au1])/2 -
(tp3[al1, al2, au2]*tp3[al3, au1, au3])/8 +
(tp3[al1, al2, au1]*tp3[al3, au2, au3])/8 +
v0^4*((tp3[9, 9, al1]*tp3[9, 9, au1])/8 - tp4[9, 9, 9, 9]/8) -
tp4[9, 9, 9, 9]/8 - tp4[9, 9, al1, au1]/4)
The coefficients of in
are shown below.
![[Graphics:../Images/index_gr_976.gif]](../Images/index_gr_976.gif)
Coefficient of
![[Graphics:../Images/index_gr_978.gif]](../Images/index_gr_978.gif)
Coefficient of
![[Graphics:../Images/index_gr_981.gif]](../Images/index_gr_981.gif)
Coefficient of
![[Graphics:../Images/index_gr_984.gif]](../Images/index_gr_984.gif)
Coefficient of
![[Graphics:../Images/index_gr_987.gif]](../Images/index_gr_987.gif)
Coefficient of
![[Graphics:../Images/index_gr_990.gif]](../Images/index_gr_990.gif)