is given as follows.
![[Graphics:../Images/index_gr_792.gif]](../Images/index_gr_792.gif)
First, we set η=(0,...,0,v0). In other words, , and
. Here we use symbol v0 for λ.
![[Graphics:../Images/index_gr_796.gif]](../Images/index_gr_796.gif)
![[Graphics:../Images/index_gr_797.gif]](../Images/index_gr_797.gif)
Then, change of variables y=η(u,v).
![[Graphics:../Images/index_gr_799.gif]](../Images/index_gr_799.gif)
![[Graphics:../Images/index_gr_801.gif]](../Images/index_gr_801.gif)
Now we get logdensityuv=foo38=f(u,v|v0).
![[Graphics:../Images/index_gr_803.gif]](../Images/index_gr_803.gif)
![[Graphics:../Images/index_gr_804.gif]](../Images/index_gr_804.gif)
![[Graphics:../Images/index_gr_806.gif]](../Images/index_gr_806.gif)
-v^2/2 + v*v0 - v0^2/2 - (dim*Log[2*Pi])/2 - (ru[al1]*ru[au1])/2 +
o*(-(v0*ru[al1]*ru[al2]*td[au1, au2]) - (v^3*tp3[9, 9, 9])/6 -
(v0^3*tp3[9, 9, 9])/3 + v*(2*td[al1, au1] + tp3[9, 9, 9]/2 +
(v0^2*tp3[9, 9, 9])/2 - (v0*ru[al1]*tp3[9, 9, au1])/2 -
tp3[9, al1, au1]/2 + ru[al1]*ru[al2]*(-td[au1, au2] +
tp3[9, au1, au2]/2)) + ru[al1]*((v0^2*tp3[9, 9, au1])/2 +
tp3[al2, au1, au2]/2) - (ru[al1]*ru[al2]*ru[al3]*
tp3[au1, au2, au3])/6) +
o^2*(-(v0*ru[al1]*ru[al2]*ru[al3]*te[au1, au2, au3]) +
tp3[9, 9, 9]^2/6 + (tp3[9, 9, al1]*tp3[9, 9, au1])/2 +
(tp3[9, al1, au2]*tp3[9, al2, au1])/2 +
(tp3[al1, al2, al3]*tp3[au1, au2, au3])/6 - tp4[9, 9, 9, 9]/8 -
(v^4*tp4[9, 9, 9, 9])/24 - (v0^4*tp4[9, 9, 9, 9])/8 +
v^3*ru[al1]*(-(td[au1, au2]*tp3[9, 9, al2]) +
(tp3[9, 9, 9]*tp3[9, 9, au1])/4 +
(tp3[9, 9, au2]*tp3[9, al2, au1])/2 - tp4[9, 9, 9, au1]/6) +
(v0^3*ru[al1]*tp4[9, 9, 9, au1])/6 +
v^2*(-2*td[al1, au2]*td[al2, au1] - tp3[9, 9, 9]^2/4 -
(tp3[9, 9, al1]*tp3[9, 9, au1])/2 + 2*td[al1, au2]*
tp3[9, al2, au1] - (3*tp3[9, al1, au2]*tp3[9, al2, au1])/4 +
tp4[9, 9, 9, 9]/4 + tp4[9, 9, al1, au1]/4) -
tp4[9, 9, al1, au1]/4 + v*((v0^3*tp4[9, 9, 9, 9])/6 +
ru[al1]*ru[al2]*(-2*v0*td[al3, au2]*td[au1, au3] +
(v0*td[au1, au2]*tp3[9, 9, 9])/2 +
(3*v0*tp3[9, 9, au1]*tp3[9, 9, au2])/8 +
(v0*tp3[9, al3, au2]*tp3[9, au1, au3])/2 -
(v0*tp4[9, 9, au1, au2])/4) +
ru[al1]*(6*te[al2, au1, au2] + 5*td[au1, au2]*tp3[9, 9, al2] +
v0^2*td[au1, au2]*tp3[9, 9, al2] + td[al2, au2]*
tp3[9, 9, au1] - (3*tp3[9, 9, 9]*tp3[9, 9, au1])/4 -
(v0^2*tp3[9, 9, 9]*tp3[9, 9, au1])/4 -
(3*tp3[9, 9, au2]*tp3[9, al2, au1])/2 -
(v0^2*tp3[9, 9, au2]*tp3[9, al2, au1])/2 +
(tp3[9, 9, au1]*tp3[9, al2, au2])/4 - 2*td[al2, au3]*
tp3[al3, au1, au2] + (tp3[9, al2, au3]*tp3[al3, au1, au2])/
2 - td[al2, au1]*tp3[al3, au2, au3] +
(tp3[9, al2, au1]*tp3[al3, au2, au3])/2 +
tp4[9, 9, 9, au1]/2 - tp4[9, al2, au1, au2]/2) +
ru[al1]*ru[al2]*ru[al3]*(-2*te[au1, au2, au3] -
(3*td[au2, au3]*tp3[9, 9, au1])/2 -
(tp3[9, 9, au3]*tp3[9, au1, au2])/4 +
td[al4, au3]*tp3[au1, au2, au4] -
(tp3[9, al4, au3]*tp3[au1, au2, au4])/2 +
tp4[9, au1, au2, au3]/3)) - tp4[al1, al2, au1, au2]/8 +
ru[al1]*ru[al2]*(2*td[al3, au2]*td[au1, au3] -
(v0^2*td[au1, au2]*tp3[9, 9, 9])/2 - 2*td[au2, au3]*
tp3[9, al3, au1] - (td[au1, au2]*tp3[9, al3, au3])/2 -
(tp3[al3, al4, au1]*tp3[au2, au3, au4])/4 +
tp4[al3, au1, au2, au3]/4) + ru[al1]*ru[al2]*ru[al3]*ru[al4]*
(-(td[au1, au2]*td[au3, au4])/2 +
(td[au3, au4]*tp3[9, au1, au2])/2 - tp4[au1, au2, au3, au4]/
24))
We extract the coefficients for u, v from the density function f(u,v|v0).
![[Graphics:../Images/index_gr_807.gif]](../Images/index_gr_807.gif)
![[Graphics:../Images/index_gr_808.gif]](../Images/index_gr_808.gif)
![[Graphics:../Images/index_gr_810.gif]](../Images/index_gr_810.gif)
-coefficients
![[Graphics:../Images/index_gr_813.gif]](../Images/index_gr_813.gif)
![[Graphics:../Images/index_gr_816.gif]](../Images/index_gr_816.gif)
![[Graphics:../Images/index_gr_819.gif]](../Images/index_gr_819.gif)
![[Graphics:../Images/index_gr_822.gif]](../Images/index_gr_822.gif)
![[Graphics:../Images/index_gr_825.gif]](../Images/index_gr_825.gif)
-coefficients
![[Graphics:../Images/index_gr_829.gif]](../Images/index_gr_829.gif)
![[Graphics:../Images/index_gr_832.gif]](../Images/index_gr_832.gif)
![[Graphics:../Images/index_gr_835.gif]](../Images/index_gr_835.gif)
![[Graphics:../Images/index_gr_838.gif]](../Images/index_gr_838.gif)
![[Graphics:../Images/index_gr_841.gif]](../Images/index_gr_841.gif)
-coefficients
![[Graphics:../Images/index_gr_845.gif]](../Images/index_gr_845.gif)
![[Graphics:../Images/index_gr_848.gif]](../Images/index_gr_848.gif)
![[Graphics:../Images/index_gr_851.gif]](../Images/index_gr_851.gif)
![[Graphics:../Images/index_gr_854.gif]](../Images/index_gr_854.gif)
![[Graphics:../Images/index_gr_857.gif]](../Images/index_gr_857.gif)
-coefficients
![[Graphics:../Images/index_gr_861.gif]](../Images/index_gr_861.gif)
![[Graphics:../Images/index_gr_864.gif]](../Images/index_gr_864.gif)
![[Graphics:../Images/index_gr_867.gif]](../Images/index_gr_867.gif)
![[Graphics:../Images/index_gr_870.gif]](../Images/index_gr_870.gif)
![[Graphics:../Images/index_gr_873.gif]](../Images/index_gr_873.gif)
-coefficients
![[Graphics:../Images/index_gr_877.gif]](../Images/index_gr_877.gif)
![[Graphics:../Images/index_gr_880.gif]](../Images/index_gr_880.gif)
![[Graphics:../Images/index_gr_883.gif]](../Images/index_gr_883.gif)
![[Graphics:../Images/index_gr_886.gif]](../Images/index_gr_886.gif)
![[Graphics:../Images/index_gr_889.gif]](../Images/index_gr_889.gif)