Here we will calculate the log of the Jacobian .
First, we obtain the expression of =
.
foo23 =
![[Graphics:../Images/index_gr_751.gif]](../Images/index_gr_751.gif)
foo24 =
![[Graphics:../Images/index_gr_754.gif]](../Images/index_gr_754.gif)
foo25 =
![[Graphics:../Images/index_gr_757.gif]](../Images/index_gr_757.gif)
foo26 =
![[Graphics:../Images/index_gr_760.gif]](../Images/index_gr_760.gif)
![[Graphics:../Images/index_gr_763.gif]](../Images/index_gr_763.gif)
foo28=foo27 foo24 =
![[Graphics:../Images/index_gr_766.gif]](../Images/index_gr_766.gif)
foo29=foo23-foo28=foo23-
.
![[Graphics:../Images/index_gr_771.gif]](../Images/index_gr_771.gif)
Now, is transformed to
by the simple conventions preserving the determinant.
Then, 1+(foo26-1)) =
.
foo30=trace(foo29)
![[Graphics:../Images/index_gr_777.gif]](../Images/index_gr_777.gif)
![[Graphics:../Images/index_gr_780.gif]](../Images/index_gr_780.gif)
![[Graphics:../Images/index_gr_783.gif]](../Images/index_gr_783.gif)
Finally, logdetJ=foo31
![[Graphics:../Images/index_gr_787.gif]](../Images/index_gr_787.gif)
![[Graphics:../Images/index_gr_789.gif]](../Images/index_gr_789.gif)