![[Graphics:../Images/index_gr_586.gif]](../Images/index_gr_586.gif)
![[Graphics:../Images/index_gr_589.gif]](../Images/index_gr_589.gif)
Define rules for the tangent vectors.
![[Graphics:../Images/index_gr_591.gif]](../Images/index_gr_591.gif)
![[Graphics:../Images/index_gr_592.gif]](../Images/index_gr_592.gif)
check if they work
![[Graphics:../Images/index_gr_593.gif]](../Images/index_gr_593.gif)
![[Graphics:../Images/index_gr_595.gif]](../Images/index_gr_595.gif)
Next, we will calculate below.
Apply the separate operator to phi2eta=, and evaluate it on the surface to get phi2u=
.
![[Graphics:../Images/index_gr_601.gif]](../Images/index_gr_601.gif)
![[Graphics:../Images/index_gr_603.gif]](../Images/index_gr_603.gif)
![[Graphics:../Images/index_gr_605.gif]](../Images/index_gr_605.gif)
Using phi2u above, we write phi2bu= as follows. First, the summation range of phi2bu is separated into type-a and dim. Then,
are substituted by their expressions.
![[Graphics:../Images/index_gr_610.gif]](../Images/index_gr_610.gif)
![[Graphics:../Images/index_gr_612.gif]](../Images/index_gr_612.gif)
![[Graphics:../Images/index_gr_614.gif]](../Images/index_gr_614.gif)
We may symmetrize the coefficients of phi2bu.
![[Graphics:../Images/index_gr_616.gif]](../Images/index_gr_616.gif)
![[Graphics:../Images/index_gr_618.gif]](../Images/index_gr_618.gif)
![[Graphics:../Images/index_gr_620.gif]](../Images/index_gr_620.gif)
Further simplification is possible. Here the phi2bu is essentially the same as above although the warning messages appear.
![[Graphics:../Images/index_gr_622.gif]](../Images/index_gr_622.gif)
![[Graphics:../Images/index_gr_633.gif]](../Images/index_gr_633.gif)