Consider Taylor series , where
![[Graphics:../Images/index_gr_342.gif]](../Images/index_gr_342.gif)
Define foo31 and foo32 below, which will satisfy as shown later.
![[Graphics:../Images/index_gr_345.gif]](../Images/index_gr_345.gif)
![[Graphics:../Images/index_gr_347.gif]](../Images/index_gr_347.gif)
Define a rule to make , thus ih2 is the inverse matrix of h2.
![[Graphics:../Images/index_gr_350.gif]](../Images/index_gr_350.gif)
Apply this rule to foo31+foo32 to get foo33.
![[Graphics:../Images/index_gr_351.gif]](../Images/index_gr_351.gif)
Confirming foo33=
![[Graphics:../Images/index_gr_354.gif]](../Images/index_gr_354.gif)
Since is the multivariate normal density function with mean specified above and
covariance,
=
. Then, ψ(θ)=log
![[Graphics:../Images/index_gr_361.gif]](../Images/index_gr_361.gif)
Considering , we find that
and
from the above expression of
. Let us write
with
![[Graphics:../Images/index_gr_369.gif]](../Images/index_gr_369.gif)
![[Graphics:../Images/index_gr_372.gif]](../Images/index_gr_372.gif)
Rewrite the Taylor series of h(y) by noting the first derivative h1 is in fact .
![[Graphics:../Images/index_gr_374.gif]](../Images/index_gr_374.gif)
In the following, , where
.
![[Graphics:../Images/index_gr_378.gif]](../Images/index_gr_378.gif)
![[Graphics:../Images/index_gr_380.gif]](../Images/index_gr_380.gif)
![[Graphics:../Images/index_gr_382.gif]](../Images/index_gr_382.gif)
Noting , where the expectation is taken for the multivariate normal with mean
and covariance identity. We apply "logeexppoly" to foo37. First, we get foo38={a0,a1,a2,a3,a4} for the coefficients of
, and
below.
![[Graphics:../Images/index_gr_388.gif]](../Images/index_gr_388.gif)
![[Graphics:../Images/index_gr_390.gif]](../Images/index_gr_390.gif)
Now substitute for
in foo39 to get ψ(θ)=foo40 in terms of η below. The coefficients for the polynomial of η is stored in foo41.
![[Graphics:../Images/index_gr_395.gif]](../Images/index_gr_395.gif)
![[Graphics:../Images/index_gr_396.gif]](../Images/index_gr_396.gif)
Since foo40=ψ(θ)=psieta, foo41 must be equal to foo42 below.
![[Graphics:../Images/index_gr_398.gif]](../Images/index_gr_398.gif)
At first, we compare the coefficient for .
![[Graphics:../Images/index_gr_401.gif]](../Images/index_gr_401.gif)
![[Graphics:../Images/index_gr_403.gif]](../Images/index_gr_403.gif)
Thus, ah2 is in fact instead of
.
![[Graphics:../Images/index_gr_407.gif]](../Images/index_gr_407.gif)
We rewrite foo43=foo42-foo41.
![[Graphics:../Images/index_gr_409.gif]](../Images/index_gr_409.gif)
We solve these five equations ⩵ 0. At first, foo43[[4]]==0 gives
![[Graphics:../Images/index_gr_412.gif]](../Images/index_gr_412.gif)
![[Graphics:../Images/index_gr_414.gif]](../Images/index_gr_414.gif)
![[Graphics:../Images/index_gr_415.gif]](../Images/index_gr_415.gif)
![[Graphics:../Images/index_gr_417.gif]](../Images/index_gr_417.gif)
![[Graphics:../Images/index_gr_418.gif]](../Images/index_gr_418.gif)
![[Graphics:../Images/index_gr_420.gif]](../Images/index_gr_420.gif)
![[Graphics:../Images/index_gr_421.gif]](../Images/index_gr_421.gif)
![[Graphics:../Images/index_gr_423.gif]](../Images/index_gr_423.gif)
![[Graphics:../Images/index_gr_424.gif]](../Images/index_gr_424.gif)
![[Graphics:../Images/index_gr_426.gif]](../Images/index_gr_426.gif)