Define "ruleeta1" for the Taylor series of is
, where
and
.
![[Graphics:../Images/index_gr_288.gif]](../Images/index_gr_288.gif)
![[Graphics:../Images/index_gr_289.gif]](../Images/index_gr_289.gif)
Define "ruletheta1" for the Taylor series of , where
and
.
![[Graphics:../Images/index_gr_295.gif]](../Images/index_gr_295.gif)
![[Graphics:../Images/index_gr_296.gif]](../Images/index_gr_296.gif)
Calculate by taking the partial differentiation of
with respect to
. Define "rulephi2" for
.
![[Graphics:../Images/index_gr_303.gif]](../Images/index_gr_303.gif)
![[Graphics:../Images/index_gr_305.gif]](../Images/index_gr_305.gif)
![[Graphics:../Images/index_gr_308.gif]](../Images/index_gr_308.gif)
Apply for
to
![[Graphics:../Images/index_gr_312.gif]](../Images/index_gr_312.gif)
Substitute ruleeta1 for to get
using φ derivatives as well as ψ derivatives.
![[Graphics:../Images/index_gr_316.gif]](../Images/index_gr_316.gif)
The above expression is compared with , and the coefficients are obtained below.
![[Graphics:../Images/index_gr_321.gif]](../Images/index_gr_321.gif)
![[Graphics:../Images/index_gr_323.gif]](../Images/index_gr_323.gif)
![[Graphics:../Images/index_gr_325.gif]](../Images/index_gr_325.gif)
![[Graphics:../Images/index_gr_326.gif]](../Images/index_gr_326.gif)
We have obtained , and
as follows.
![[Graphics:../Images/index_gr_329.gif]](../Images/index_gr_329.gif)
![[Graphics:../Images/index_gr_331.gif]](../Images/index_gr_331.gif)
Let us write down the Taylor series
![[Graphics:../Images/index_gr_335.gif]](../Images/index_gr_335.gif)