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Abstract.— An approximately unbiased (AU) test that uses a newly devised multiscale bootstrap
technique was developed for general hypothesis testing of regions in an attempt to reduce test bias.
It was applied to maximum-likelihood tree selection for obtaining the con�dence set of trees. The
AU test is based on the theory of Efron et al. (Proc. Natl. Acad. Sci. USA 93:13429–13434; 1996), but
the new method provides higher-order accuracy yet simpler implementation. The AU test, like the
Shimodaira–Hasegawa (SH) test, adjusts the selection bias overlooked in the standard use of the
bootstrap probability and Kishino–Hasegawa tests. The selection bias comes from comparing many
trees at the same time and often leads to overcon�dence in the wrong trees. The SH test, though safe
to use, may exhibit another type of bias such that it appears conservative. Here I show that the AU
test is less biased than other methods in typical cases of tree selection. These points are illustrated
in a simulation study as well as in the analysis of mammalian mitochondrial protein sequences.
The theoretical argument provides a simple formula that covers the bootstrap probability test, the
Kishino–Hasegawa test, the AU test, and the Zharkikh–Li test. A practical suggestion is provided as to
which test should be used under particular circumstances. [Approximately unbiased test; con�dence
limit; Kishino–Hasegawa test; maximum likelihood; multiscale bootstrap; phylogenetics; selection
bias; Shimodaira–Hasegawa test.]

Tree selection is a common practice in phy-
logenetics and is used to �nd an optimal tree
from taxonomic molecular sequences. One
of the widely used selection criteria is the
maximum likelihood (ML) method (Cavalli-
Sforza and Edwards, 1967; Felsenstein, 1981),
which calculates a likelihood value for each
of the candidate trees and then selects the
tree with the largest likelihood value. If we
have imaginary sequences of in�nite length
for a �nite number of taxa, the optimal tree
will represent the true history of evolution
unless the assumed model of evolution, that
is the substitution process, is extremely mis-
speci�ed. In practice, however, the sequence
length is �nite. When the sequence length is
not long enough, sampling error causes tree
selection to �uctuate, and the optimal tree
may not re�ect the true tree. In other words,
the optimal tree may have been designated
optimal by chance.

Several procedures have been developed
and used for assessing the con�dence of
tree selection. The bootstrap probability
(BP; Felsenstein, 1985) and the Kishino–
Hasegawa tests (KH; Linhart, 1988; Kishino
and Hasegawa, 1989; Vuong, 1989) have been
used widely. These methods produce for
each tree a number ranging from zero to
one. This number is the probability value or
P-value, which represents the possibility that
the tree is the true tree. The greater the
P-value, the greater the probability that the

tree is the true tree. Relative certainty, or un-
certainty, in tree selection can also be repre-
sented as the con�dence set—the set of trees
that are not rejected by the tests. One expects
the true tree will be included in the con�-
dence set.

Although the BP test is very useful in prac-
tice, it is biased, as discussed in Hillis and
Bull (1993), Felsenstein and Kishino (1993),
Zharkikh and Li (1992), Efron et al. (1996),
and Sanderson and Wojciechowski (2000).
As mentioned in Shimodaira and Hasegawa
(1999) and Goldman et al. (2000), selection
bias is also apparent in the KH test because,
typically, many trees have been compared
when the choice of the ML tree is made. In
other words, the likelihood value for the ML
tree is biased upward because the maximum
of likelihood values over all the trees can eas-
ily have a very large value by chance. The
selection bias often leads to overcon�dence
in the wrong trees. This may result in con-
�icting conclusions, each claiming statisti-
cal signi�cance; only one, however, can be
true.

The selection bias of the KH test is auto-
matically adjusted by a multiple compari-
sons test known as the Shimodaira–
Hasegawa (SH) test (Shimodaira and
Hasegawa, 1999; Goldman et al., 2000) when
applied to tree selection. As mentioned in
Remark 4 of Shimodaira and Hasegawa
(1999), the selection bias is also adjusted by
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the weighted Shimodaira–Hasegawa (WSH)
test (Shimodaira, 1993, 1998; Shimodaira
and Hasegawa, 1999; Buckley et al., 2001),
in which the test statistics of the SH test are
standardized. There is a problem, however,
in the multiple comparisons tests. Strimmer
and Rambaut (2001) pointed out that the SH
test may be subject to another type of bias
such that the number of trees included in the
con�dence set tends to be very large as the
number of trees to be compared increases.
This conservative behavior of the SH test
is alleviated, although not completely, by
weighting in the WSH test.

Here, I propose a new method for reduc-
ing the bias of the BP test. The approximately
unbiased (AU) test was developed for gen-
eral hypothesis testing of regions; its accu-
racy has been con�rmed (Shimodaira, 2000a)
for very simple cases in which an exactly un-
biased test can be obtained as a reference. The
AU test provides yet another procedure for
assessing the con�dence of tree selection. The
AU test adjusts the selection bias ignored in
the BP and KH tests and is less conservative
than the SH test.

The theory behind the AU test is an exten-
sion of the geometric theory of Efron et al.
(1996), providing higher-order accuracy with
simpler implementation. In the newly de-
vised multiscale bootstrap procedure, sev-
eral sets of bootstrap replicates are generated
by changing the sequence length, which may
differ from that of the original data. The num-
ber of times the hypothesis is supported by
the replicates is counted for each set to ob-
tain BP values for different sequence lengths.
The AU test calculates the approximately un-
biased P-value from the change in the BP
values along the changing sequence length.
This remarkably simple implementation of
the AU test is an idea very similar to the
complete-and-partial bootstrap technique of
Zharkikh and Li (1995; ZL).

The test procedures mentioned above are
justi�ed in their own right. However, it is of
interest to compare certain aspects of the pro-
cedures. I will discuss two aspects associated
with coverage probability, namely, type-1 er-
ror and unbiasedness. A test controls a type-1
error rate if the probability of false rejection
under the null hypothesis is not greater than
the signi�cance level ®, say, 0.05. A test is un-
biased if the probability of correct rejection
under alternative hypotheses is not less than
® and if it controls the rate of type-1 error. An

unbiased test, then, controls the probability
of a type-1 error, whereas a test may be biased
even if it controls for type-1 error.

The KH test does not control for type-1 er-
ror, nor is it unbiased, given its selection bias.
The SH test is excellent in terms of type-1
error, but it is heavily biased. This explains
why the SH test appears conservative, espe-
cially for comparisons of many trees. Plainly,
the SH test is derived under a pessimistic as-
sumption. The AU test, on the other hand,
is derived under a rather moderate assump-
tion. In most cases it works better than the SH
test but in special cases may violate type-1
error. These points will be illustrated in a
simulation study as well as in the analysis
of the mammalian mitochondrial (mt) pro-
tein sequences of Shimodaira and Hasegawa
(1999).

Other methods such as the parametric
bootstrap test, the Bayesian posterior proba-
bility test, and the likelihood ratio test against
the full model, are not discussed here. These
methods may have dif�culty in tree selec-
tion, being sensitive to the misspeci�cation of
the probabilistic model of evolution. The true
tree is often rejected at an extremely small
signi�cance level. See Shimodaira (2001) for
a brief discussion, and Goldman et al. (2000)
for the difference between the nonparamet-
ric and parametric versions of the bootstrap
method.

Monotonicity is another desirable prop-
erty of tests discussed in literature (see
Appendix remark 1). This is a simple logical
requirement for selection. The SH and WSH
tests are monotone, but the AU test is not.
Monotonicity will not be sought, however,
because monotonicity and unbiasedness are
not compatible. The AU test, like the test of
Shimodaira (2000b), is an attempt to obtain
lessbiased tests by relaxing the monotonicity.

To discuss the con�dence of tree selection
in terms of statistical testing, one must clarify
the null hypotheses being tested. I do so in
thenext section, and then brie�y review boot-
strap resampling and coverage probability.
On thebasisof the notations and terminology
given in these review sections, the AU test
is described. Speci�c steps are provided in
the section on the multiscale bootstrap. Not
only tree selection but also edge selection for
testing the monophyly of a speci�ed group
of taxa will be discussed. All technical details
are provided in the Appendix and referenced
in the text.
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For calculating the P-values, the software
CONSEL was developed by Shimodaira and
Hasegawa (2001); it is available from the
author. The software currently works in
conjunction with the phylogenetic software
packages Molphy (Adachi and Hasegawa,
1996a), PAML (Yang, 1997), and PAUP¤

(Swofford, 1998).

METHODS

Null Hypotheses

In tree selection, one tries to identify the
best tree from a set of competing trees, for ex-
ample, tree-1, tree-2, : : : , tree-M, where M is
the number of the trees compared. Each tree
represents a hypothetical branching order of
species. M may be the number of all possi-
ble combinations of tree form of the taxa. Let
us try to reduce M in advance of the anal-
ysis, if some of the trees can be eliminated
by prior knowledge. For each tree, we are
given a score calculated from the molecular
sequences, and we select the tree with the
highest score. Let Yi be the log-likelihood of
tree-i for i D 1, : : : , M, and take that as the
score of the tree. The log-likelihood may be
expressed as

Yi D
NX

nD1

Xi,n, (1)

where N is the length of the sequences and
Xi,n is the site-wise log-likelihood of tree-i
at site-n. Note that calculation of Xi,n, i D
1, : : : , M, n D 1, : : : , N involves numerical
optimization of the tree parameters, for ex-
ample, the edge lengths. The ML estimate
(MLE) of these parameters is obtained by
maximizing Yi for each tree. The values of
Xi,n are produced by the phylogenetic soft-
ware programs mentioned earlier.

Yi is recognizable as a random variable be-
cause it is calculated from other random vari-
ables, namely, the molecular sequences. The
observed data set of the molecular sequences
is an instance of the random matrix gener-
ated by the stochastic process on the tree,
which is a probabilistic model of the sub-
stitution process of molecules along the ge-
nealogy (Cavalli-Sforza and Edwards, 1967;
Felsenstein, 1981). Assuming independence
of the sites, the generation of Yi is mathe-
matically equivalent to the following simple

sampling model. Although the sampling
model appears to be biologically inaccurate,
the mathematical equivalence justi�es our
use of it. In addition, its simplicity helps us
to understand the statistical argument.

Consider imaginary sequences of in�nite
length, and take a random sample of length
N0. The log-likelihood for tree-i is then ex-
pressed as

Y¤
i D

N
N0

N0X

jD1

Xi,n j , (2)

where n j denotes a randomly selected site
from the in�nite length sequences, and factor
N=N0 is included to make Eq. 2 comparable
to Yi . Y¤

i is recognized as a random variable
because its value depends on the sampling of
the sites. The observed Yi is an instance of Y¤

i
in which N0 D N. Note that the tree parame-
ters should be reoptimized for each set of the
sampled sites, but here values of Xi,n will be
treated as �xed values. This approximation
is explained later.

As N0 approaches in�nity, Eq. 2 converges
to a value denoted ¹i . In fact, ¹i is the ex-
pected value of Yi for i D 1, : : : , M. Yi is
distributed around ¹i , and thus the ran-
dom vector Y D (Y1, : : : , YM) is jointly dis-
tributed around the parameter vector ¹ D
(¹1, : : : , ¹M). The tree of interest is the tree
with the largest ¹i value, because it is the true
tree under certain conditions (see Appendix
remark 2).

The null hypotheses being tested are now
described in terms of regions of the parame-
ter space. The hypothesis that tree-i has the
largest ¹i value is

Hi : ¹i ¸ ¹ j , j D 1, : : : , M: (3)

This is regarded as a region in the M-
dimensional parameter space, and ¹ is said
to be included in region Hi , that is, ¹ 2 Hi ,
when ¹i is the largest among ¹1, : : : , ¹M.
Because the parameter space can be identi-
�ed with the sampling space for Y, Y 2 Hi
when tree-i has the largest Yi value among
Y1, : : : , YM. The parameter space is divided
into M regions H1, : : : , HM corresponding to
M trees, and these regions are facing each
other on the boundaries where ¹i D ¹ j for
at least some i 6D j . Which region the ob-
served log-likelihood vector Y falls in can be
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determined, but ascertaining which region
the parameter vector ¹ belongs to requires
more information, as detailed in the next
section.

Bootstrap Resampling

Considering that Y is distributed around
¹, one might believe that the hypothesis ¹ 2
Hi is probable when the event Y 2 Hi is ob-
served. There is, however, the possibility that
Y 2 Hi by chance, even though ¹ 2 Hj for
some j 6D i . In other words, the selected tree
with the largest Yi value is not necessarily
the tree with the largest ¹i value. The con-
�dence of the selection would be assessed
by determining how much the selection �uc-
tuates if Y¤ of Eq. 2 is sampled from the
imaginary in�nite-length sequences. The fre-
quencies with which Y¤ falls in the regions
H1, : : : , HM of M trees indicate how proba-
ble these trees are.

Because in�nite-length sequences are not
available in practice, let us replace them with
observed sequences of length N. This is what
the bootstrap resampling does. It is often the
case that N0 D N for the bootstrap resam-
pling, but we reserve the generality of using
any value for N0. A bootstrap replicate Y¤

i of
Yi is given by Eq. 2, but the sites n1, : : : , nN0

are randomly sampled from 1, : : : , N with
replacement. A bootstrap replicate Y¤ of the
vector Y is then Y¤ D (Y¤

1 , : : : , Y¤
M), with the

same n1, : : : , nN0 being used in all of the Y¤
i

values so that the correlation structure
among the elements of Y¤ re�ects that of Y.
This random resampling is repeated B times,
and the bootstrap replicates Y¤ 1, : : : , Y¤ B of
Y are obtained. B should be large enough,
for example, 10,000, that the frequencies
are calculated with marginally small sam-
pling errors. The BP of tree-i , denoted BPi ,
is the frequency obtained by counting how
many times the event Y¤ b 2 Hi is observed
for b D 1, : : : , B. The counts are divided
by B so that BP1 C ¢ ¢ ¢ C BPM D 1. Tree-i
is regarded as probable when BPi is large
enough.

According to the description of the
nonparametric bootstrap of Efron (1979) and
Felsenstein (1985), the molecular sequences
of the sites n1, : : : , nN0 are to be sampled to
constitute a replicate of the data set, and
the MLE will be calculated for the repli-
cate. In the bootstrap procedure described
above, however, we sampled the site-wise

log-likelihoods corresponding to these sites
by treating them as �xed values. This approx-
imation is the resampling of estimated log-
likelihoods (RELL) method of Kishino et al.
(1990), which avoids time-consuming recal-
culation of the MLE of the tree parameters
for a large number of replicates. The approx-
imation improves as N and N0 become larger,
and further improvement is possible by tak-
ing into account a higher-order term, as de-
scribed in Lemma 1 of Shimodaira (2001).
However, the RELL method is often accu-
rate enough for phylogenetic analysis, as in-
dicated in the simulation of Hasegawa and
Kishino (1994), because the sequence length
currently is very large.

Given that Y¤ is expressed as the sum of
independently sampled N0 components in
Eq. 2, it follows from the central limit the-
orem that the distribution of Y¤ approaches
the multivariate normal as N0 approaches in-
�nity. This justi�es the normal approxima-
tion of the distribution of Y¤

i ¡ Y¤
j used com-

monly in the KH test.
Although independence of the sites is as-

sumed throughout in this paper, modifying
the method to take into account the short-
range correlations among the sites is not very
dif�cult. Block resampling for time series is
useful for this case (see, for example, the
bibliographic notes of Davison and Hinkley,
1997:427).

Coverage Probability

The P-value of testing Hi , denoted Pi , is
calculated from the site-wise log-likelihoods
Xi,n, i D 1, : : : , M, n D 1, : : : , N. Several def-
initions of P-values other than BPi are avail-
able in the literature. Although those may be
justi�ed under some circumstances, I argue
for the desired properties of P-values below.

In the practice of statistical testing, Hi is
rejected when Pi < ® for a prespeci�ed level
of signi�cance 0 < ® < 1, say, 0.05. In other
words, the possibility is rejected that, among
the candidate trees, tree-i has the largest ¹i
value. The rejection probability of tree-i is

¯i (¹) D PrfPi < ®; ¹g, (4)

where ¹ in Eq. 4 indicates that the probability
depends on ¹. ¯i (¹) is sometimes called the
power function.

The con�dence set of trees is obtained
by collecting trees with Pi ¸ ®. When ¹ 2
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Hi , it is desirable for Pi to be ¸ ® so that
tree-i is included in the con�dence set. This
probability

1 ¡ ¯i (¹), ¹ 2 Hi (5)

is called the coverage probability of the con-
�dence set. The coverage probability should
not be smaller than the con�dence coef�cient
1 ¡ ®. In other words, the probability of false
rejection should satisfy

¯i (¹) · ®, ¹ 2 Hi : (6)

The test controls for type-1 error when in-
equality 6 holds.

The test can be very conservative, even if
it controls for the type-1 error, when the re-
jection probability is small for the false hy-
potheses. When ¹ is not included in Hi , that
is, ¹ 62 Hi , it is desirable for ¯i (¹) to be as
large as possible. The test of Hi is said to be
unbiased when

¯i (¹) ¸ ®, ¹ 62 Hi (7)

and when inequality 6 holds at the same
time. Often ¯i (¹) changes continuously as
¹ moves, and thus the unbiasedness im-
plies “similarity” (Lehmann, 1986) on the
boundary

¯i (¹) D ®, ¹ 2 @ Hi , (8)

where @ Hi denotes the boundary of Hi . @ Hi
is the hypersurface of Hi facing the outside
of Hi (Fig. 1). If this is the case, Pi is a ran-
dom variable distributed uniformly on [0, 1]
when ¹ 2 @ Hi . The similarity is checked
rather easily and is used as a substitute for
unbiasedness. Unbiasedness is one of the de-
sired properties, though not a mandatory
one, of P-values.

The SH test and the WSH test satisfy in-
equality 6 as explained in Shimodaira and
Hasegawa (1999). However, the equality pos-
sible in inequality 6, that is, ¯i (¹) D ®, oc-
curs only at the least favorable con�guration
where ¹1 D ¢ ¢ ¢ D ¹M, the inequality holding
strictly for the other ¹ 2 Hi . The power can
be much smaller than ® for general values of
¹ 62 Hi , and Eq. 8 does not hold at all. This
effect is multiplied as M increases, which
makes the SH test and the WSH test look

FIGURE 1. Region H1 with boundary @ H1. Y is the
data point, ¹̂ is the projection, and d is the signed dis-
tance. The asymptotic theory behind the AU test as-
sumes (a) a smooth boundary, which approximates (b)
a nonsmooth boundary. In fact, the boundary is not
smooth for the selection problem, where region H1 forms
a polyhedral convex cone in M-dimensional space. The
curvature is zero everywhere but becomes in�nite at the
vertex and the edges where ¹ j D ¹1 for more than one
j 6D 1.

conservative. The AU test described next
takes this problem into consideration.

Approximately Unbiased Test

The AU test for regions with general
smooth boundaries has been developed
based on the theory of Efron et al. (1996). Con-
sider a simpli�ed model of the multivariate
normal distribution with an identity covari-
ance matrix

Y » NM(¹, IM), (9)

or equivalently, Yi , i D 1, : : : , M are indepen-
dently distributed as N(¹i , 1), the normal
distribution with mean ¹i and variance 1.
This model appears to be oversimpli�ed,
because the log-likelihoods Yi are corre-
lated with each other in practice. The
transformation-invariant property of the BP,
however, justi�es the following argument.
For example, the normal model with an ar-
bitrary covariance matrix is brought back to
Eq. 9 by linear transformation, yet the BP val-
ues are invariant. One has only to assume the
existence of such a smooth, possibly nonlin-
ear, transformation to bring the problem back
to Eq. 9; it is not necessary to know what the
transformation is.

Suppose for the moment that region H1 has
smooth boundary @ H1, as shown in Figure 1a,
where vector Y is indicated as a point. The
“signed distance,” denoted d , is the distance
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from Y to @ H1 with a positive or negative
sign when Y is outside or inside of H1,
respectively. Thus,

d D §
q

(Y1 ¡ ¹̂1)2 C ¢ ¢ ¢ C (YM ¡ ¹̂M)2,

where ¹̂ D (¹̂1, : : : , ¹̂M) is the point on @ H1
closest to Y, that is, the projection of Y onto
@ H1. If @ H1 is not curved at all, d is distributed
normally with a variance of one, and its mean
becomes zero for ¹ 2 @ H1. This is easily un-
derstood by considering the invariance of
Eq. 9 under the rotation of the axes and tak-
ing d D Y1 and H1:¹1 · 0 after the change of
variables. Thus, the appropriate P-value of
the test of H1 will be

KH1 D 1 ¡ 8(d), (10)

where 8(¢) denotes the standard normal cu-
mulative distribution function. This is the
case when M D 2, and Eq. 10 corresponds to
the KH test (see Appendix remark 3).

If @ H1 is curved, however, the P-value of
Eq. 10 is no longer valid. It follows from the
Corollary of Efron (1985) that the appropriate
P-value is

AU1 D 1 ¡ 8(d ¡ c), (11)

where the number c D c1 ¡ dc2 is related to
the curvature of @ H1. Actually, c1 and c2 are
geometric constants of magnitude O(N¡1=2)
and O(N¡1), respectively, and are de�ned by
the shape of the boundary at ¹̂ (see Eq. 2.16
of Efron and Tibshirani [1998] and Appendix
remark 4). Note here that O(N®) denotes
“proportional to N® .” If @ H1 is �at, c D 0, and
Eq. 11 reduces to Eq. 10. As the region be-
comes convex, the curvature c increases so
that AU1 effectively becomes larger. This is
analogous to adjusting the selection bias in
the SH test, as will be mentioned again later.
Eq. 11 is known to be third-order accurate for
similarity; that is, it controls Eq. 8 asymptoti-
cally up to the order O(N¡1) with an error of
only O(N¡3=2).

Comparison of Tests

Comparing the existing P-values in light
of the AU test, let us consider a class of
the generalized AU P-values parameterized

by ·

AU1(·) D 1 ¡ 8(d ¡ ·c), (12)

where the curvature c is multiplied by weight
· ; · D 1 corresponds to theAU test, and · D 0
corresponds to the KH test. Note that the
replicate Y¤ with N0 D N for a given Y is dis-
tributed as

Y¤ » NM(Y, IM), (13)

and that by ignoring the sampling error of
O(B¡1=2), the BP is expressed as

BP1 D 1 ¡ 8(d C c), (14)

which follows from the argument of Efron
and Tibshirani (1998) (see Eq. 2.19 therein).
This differs from Eq. 11 only by the sign of c,
and thus a · D ¡1 corresponds to the BP.

Zharkikh and Li (1995) provided a P-
value by using two sets of bootstrap repli-
cates: “complete” bootstrap with sequence
length N0 D N, and “partial” bootstrap with
sequence length N0 < N. Their P-value is in-
tended to be less biased than the usual BP.
Appendix remark 5 shows that the ZL test
corresponds approximately to · D 3.

The curvature c has the magnitude of or-
der O(N¡1=2), so that P-values of the form
in Eq. 12, with · 6D 1, are �rst-order accu-
rate: correct asymptotically up to the order
O(1) with error O(N¡1=2). Only the choice
· D 1 makes the AU test third-order accurate
for a smooth boundary. For long sequences,
N¡3=2 ¿ N¡1=2; therefore, third-order accu-
rate P-values are less biased than �rst-order
accurate P-values.

Applying the AU test to the selection prob-
lem raises another problem, however. Region
Hi de�ned in Eq. 3 cannot be brought back
to a region with a smooth boundary by any
smooth transformation, because @ Hi is not
smooth at the vertex and the edges, as shown
in Figure 1b. Region H1 of the selection prob-
lem is actually a polyhedral convex cone in
M-dimensional space. Although this singu-
larity occasionally leads to a serious violation
of Eq. 8, as shown later, the AU test is often
useful in practice for the selection problem.

The SH test is not expressed in Eq. 12. How-
ever, it may be useful to see the curvature as
the cause of selection bias that connects the
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SH test to the AU test. The SH test adjusts the
type-1 error at the least favorable con�gura-
tion, where the selection bias is maximized,
corresponding to the vertex of @ H1 shown in
Figure 1b. This implies that SH1 may be ex-
pressed by Eq. 11 but with c evaluated at the
point where the curvature is maximized if
the boundary is smooth everywhere. Thus,
the SH test overestimates the selection bias
unless ¹ is at the vertex.

Multiscale Bootstrap

Although Eq. 11 is highly accurate, the cal-
culation of d and c is problematic in practice.
This was �rst solved by Efron et al. (1996),
using a second-level bootstrap. Let BP0 be
the BP calculated from the replicates around
¹̂ instead of Y; Y¤ » NM(¹̂, IM). This corre-
sponds to d D 0 so Eq. 14 leads to BP0 D
1 ¡ 8(c1), from which c1 is estimated. BP1
gives the estimate of d C c , from which one
can calculate

EH1 D 1 ¡ 8(d ¡ c0), (15)

where c 0 D c1 C dc2. This P-value is equiva-
lent to that of Efron et al. (1996), if ignoring
O(N¡3=2) terms. EH1 is different from Eq. 11
by the sign of dc2 and is second-order ac-
curate; correct asymptotically up to the or-
der O(N¡1=2) with error O(N¡1). The second-
order accuracy is often accurate enough in
practice, but the calculation of ¹̂ is occa-
sionally complicated in the implementation.
This motivated the development of a new
method.

The calculation of ¹̂ is avoided by the
newly devised multiscale bootstrap tech-
nique. In addition, the P-value becomes
third-order accurate by taking full advantage
of Eq. 11. The stepsdescribed below use d and
c indirectly and thus are not very susceptible
to changes in the model of Eq. 9.

Let r D N0=N be the relative sequence
length of the bootstrap replicate. If r is altered
to differ from unity, the covariance matrix in
Eq. 13 becomes IM=r , and the scale becomes
1=

p
r of the usual bootstrap. The problem re-

duces to r D 1 by multiplying Y¤ by the fac-
tor

p
r , but this causes d and c to become d

p
r

and c=
p

r , respectively. As a result of the scal-
ing, Eq. 14 becomes

BP1(r ) D 1 ¡ 8(d
p

r C c =
p

r ): (16)

A quite simple set of steps allows calculation
of the P-value of the AU test. The key idea
is to �t Eq. 16 to the BP values of different
sequence lengths.

Step 1. Specify the scaling constants r1, : : : ,
rK and the number of replicates
B1, : : : , BK for K ¸ 2 sets of
bootstrap replicates. In all of the
examples shown later, r1 D 0:5,
r2 D 0:6, : : : , r10 D 1:4, and B1 D
¢ ¢ ¢ D B10 D 10, 000 for K D 10. See
Appendix remark 6 for the choice of
scales and remark 7 for the effective
number of replicates.

Step 2. Generate Bk bootstrap replicates with
sequence length N0 D rk N for k D
1, : : : , K ,

Y¤ 1(rk), : : : , Y¤ Bk (rk),

and calculate the BP values

BP1(rk ) D #fY¤ b(rk ) 2 H1;

b D 1, : : : , Bkg=Bk :

This resampling method is termed
multiscale bootstrap, because several
values of scale 1=

p
rk are used. The

rescaling approximation described in
Appendix remark 8 is useful to re-
duce the computation.

Step 3. Estimate d and c by the weighted
least squares (WLS) method, that is,
by minimizing the residual sum of
squares (RSS)

RSS(d, c) D
KX

kD1

º¡1
k fd

p
rk C c =

p
rk

¡ 8¡1[1 ¡ BP1(rk)]g2,

where the weight for each k is the in-
verse of the variance given by

ºk D BP1(rk )[1 ¡ BP1(rk )]=

(Áf8¡1[BP1(rk)]g2 Bk ):

Note that 8¡1(¢) and Á(¢) are the quan-
tile function and the density function,
respectively, of the standard normal
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distribution. Alternatively, the MLE
of d and c can be used (see Appendix
remark 9). When RSS is very large,
the AU test should not be used (see
Appendix remark 10).

Step 4. Calculate the P-value according to
Eq. 11.

Edge Selection

Although only tree selection has been dis-
cussed, the methods described thus far can
also be used for other types of hypotheses.
The focus below is on the selection of edges,
instead of trees, to test the monophyly of a
speci�ed group of taxa. Other problems, such
as the test of congruence of phylogenies for
several genes, are treated similarly.

Monophyly is rejected if the clade is not
found in any of the nonrejected trees. This
idea, as well as its modi�cations, is described
formally as follows. An edge, often called a
branch in phylogenetics, of unrooted trees di-
vides the taxa into two groups and thus de-
termines the clade as the one not including
the outgroup. An edge in one tree is identi-
�ed with one in another tree when these two
edges determine the same split of leaves and
thus determine the same clade. Consider m
competing edges, say, edge-1, edge-2, . . . ,
edge-m. For e D 1, : : : , m, edge-e is included
in some of tree-1, : : : , tree-M, and the set of
the indices of these trees is de�ned as Se . The
clade determined by edge-e is true if tree-i
is true for some i 2 Se . In other words, the
hypothesis corresponding to edge-e, denoted
He , is rejected if all of Hi , i 2 Se is rejected by
Pi < ® for i 2 Se . Thus, the P-value of edge-e,
denoted Pe , is obtained as

Pe D max
i2Se

Pi : (17)

Equation 17 is applicable to the AU test, the
SH test, and the WSH test. It is easy to check
that Pe controls inequality 6 for He , when all
Pi , i 2 Se controls inequality 6:

PrfPe < ®g · PrfPi < ®g · ®,

when ¹ 2 Hi for some i 2 Se , because Pe ¸
Pi .

Although Eq. 17 is valid, Pe is no longer
approximately unbiased, even if the AUi val-
ues are used in Eq. 17. To improve the test
for monophyly, the AU test can be applied

directly to He in exactly the same way as
it is applied to Hi . The region correspond-
ing to edge-e is the union of the regions of
the associated trees, so that He D [i2Se Hi . The
P-value is denoted AUe . Often smaller than
the value obtained from Eq. 17, this P-value
is less conservative.

It is also possible to improve the SH test
for He (see Appendix remark 11).

RESULTS AND DISCUSSION

Testing the Spherical Region

The spherical region H1:
q

¹2
1 C ¢ ¢ ¢ C ¹2

M ·
R in M-dimensional space is simple enough
to obtain the exact P-value and BP analyt-
ically: P1 D 1 ¡ FM, R2[(R C d)2], and BP1 D
FM,(R C d)2 (R2), where FM, R2(¢) is the cumula-
tive distribution function of the noncentral
Â 2 with degrees of freedom D M and non-
centrality D R2. In Table 1, the P-values BP1,
KH1, AU1, EH1, and ZL1 are calculated for
several combinations of M and R, the val-
ues of d having been chosen to give an exact
P-value of 0.05.

Only AU1, which is third-order accurate,
is very close to the exact value for all the
combinations of M and R. EH1, with second-
order accuracy, is relatively good, except for
the large curvature. The �rst-order–accurate
P-values BP1, KH1, and ZL1 are not very
close to 0.05, except for the �at boundary
c D 0. As c becomes larger, BP1 and KH1 tend
to violate type-1 error, whereas ZL1 becomes
conservative. This agrees with the weight · ,
which is multiplied to the extent of the selec-
tion bias measured by the curvature c.

TABLE 1. P-values (£100) for spherical regions.

BP1 KH1 AU1 ZL1

M R d c (¡1) (0) (1) EH1 (3)

1 5 1.64 0.00 5.00 5.00 5.00 5.00 5.00
4 10 1.78 0.14 2.73 3.73 5.01 5.25 8.58
4 5 1.90 0.26 1.55 2.88 5.05 6.03 13.1

10 10 2.05 0.41 0.69 2.00 5.02 5.90 20.6
10 5 2.38 0.75 0.09 0.87 5.16 9.46 44.6
20 10 2.49 0.85 0.04 0.64 5.05 7.48 52.5
30 10 2.92 1.28 0.00 0.18 5.08 9.87 82.0

d was chosen so that the exact P-value is 0.05. The MLE of d
(not shown) and c were calculated by the multiscale bootstrap
technique, and used for KH1 , AU1, and ZL1 by using Eq. 12
withthe· value indicated parenthetically. EH1 was calculated by
Eq. 15. Because the BP values were obtained analytically without
simulation, the number of replicates B D 1 for all P-values.
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Simulation for the Normal Model

I performed a simulation to illustrate the
P-value differences in the selection problem;
the results are shown in Figure 2 and in
Table 2. The vector Y of M D 10 is gener-
ated from Eq. 9, in which the log-likelihoods
Yi are not correlated with each other. When
there are correlations among Yi , as is the
case in practical tree selection, the num-
ber of trees M in the simple model for
simulation effectively changes. For exam-
ple, positive correlations may effectively de-
crease M so that the selection bias becomes
small.

The �ve types of P-values were calcu-
lated for tree-1. AU1 and ZL1 were calculated
according to Eq. 12, with · D 1 and · D 3,
respectively, and using d and c estimated
by the multiscale bootstrap. The other three
P-values, BP1, KH1, and SH1, were calcu-
lated by their own de�nitions with the usual
bootstrap of r D 1. In this simulation, the
variance of Yj ¡ Yi is 2 for all the pairs,
and thus the WSH test is equivalent to the
SH test. Three simulation sets, each con-
sisting of 10,000 repetitions, have been per-
formed with different con�gurations of the
means:

¹1 D ¹2 ¸ ¹3 D ¢ ¢ ¢ D ¹M,

where M D 10 and ¹1 ¡ ¹3 is 5, 1, or 0. These
con�gurations represent the points on the
boundary of H1.

For the three cases of the con�guration,
tree-1 and tree-2 are equally good with re-
spect to ¹i values. If the model of evolution
is correctly speci�ed, and if the true tree is
one of the M candidate trees, then the tie
implies that the two trees are regarded as
“true.” Thus, the actual true tree is the con-
sensus tree obtained from the “true” trees by
shrinking the edges not shared by the two
trees. However, this is not what is intended
by the con�gurations. Rather, the tie repre-
sents the misspeci�cation of the model of
evolution. Assume that tree-1 is the true tree
and the rest of the trees are not. Then ¹1 >
¹2 under the correct speci�cation. As the
model deteriorates, the difference ¹1 ¡ ¹2
decreases (or possibly increases if the mis-
speci�cation goes the other way), and
eventually ¹1 D ¹2. Further misspeci�cation
makes ¹ across the boundary so that¹1 < ¹2;
in such a case, one may mistakenly conclude

that tree-2 is better than tree-1 even when
the in�nite length sequences are available.
What is intended by the con�gurations with
¹1 D ¹2 are the situations in which the mis-
speci�cation is the worst in some direction
within the limits that reasonable inference
is possible. This is illustrated in a geometric
argument of Shimodaira (2001). The geom-
etry is shown clearly for a simple case in
Yang (2000).

When ¹1 ¡ ¹3 D 5, the difference is large
enough that tree-3, : : : , tree-10 are rarely
comparable in Yi value to tree-1 and tree-2. In
most cases, the observed Yi values imply that
tree-3, : : : , tree-10 are obviously worse than
tree-1 and tree-2. Thus, in effect, only tree-1
and tree-2 are being compared, and the selec-
tion bias becomes marginal. As expected, the
KH test works perfectly in this case. Figure 2
shows that KH1 is distributed uniformly, and
that the equality in Eq. 8 holds at this con�g-
uration for any 0 < ® < 1. The unbiasedness
requires Eq. 8 at any con�guration on the
boundary. It was con�rmed that the equal-
ity actually holds at this con�guration, as
demonstrated in Table 2 for ® D 0:05, where
the probability of rejecting tree-1 is estimated
at 0.052. The same applies to the BP, the AU
test, and the ZL test. However, the SH test
behaves very differently. The distribution of
SH1 is heavily skewed to the right. The rejec-
tion probability of tree-1 is only 0.008, which
is much smaller than ® D 0:05. Thus, the SH
test is wasting the power and tends to in-
clude more trees in the con�dence set than
necessary. The average number of trees in the
con�dence set is 2.4 for the SH test, which is
not very different from that for the AU test in
this case. But the difference is multiplied for
large M values, as will be evident in the real
data analysis shown later.

When ¹1 ¡ ¹3 D 1, the difference is not
large enough to separate the two groups of
trees. This situation will be typical when
many similarly good trees are compared.
As Figure 2 shows, the distribution of BP1
is heavily skewed to the left. The proba-
bility of rejecting tree-1 is 0.250, which is
much larger than ® D 0:05. This is alleviated
in the KH test, but the rejection probability
is still 0.086 for tree-1, indicating overcon-
�dence in the wrong trees. The situation is
markedly alleviated in the AU test, where
the rejection probability becomes 0.057. The
distribution of AU1 is very close to the uni-
form distribution, though not perfect. The
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FIGURE 2. Distributions of P-values for tree-1. Ten trees are compared, and the means are ¹1 D ¹2 ¸ ¹3 D ¢ ¢ ¢ D
¹10. Three con�gurations of the means with ¹1 ¡ ¹3 D 5, 1, or 0 were examined by simulation of 10,000 repetitions
for each. The frequencies of the P-values are shown for 20 bins of width 0.05. The expectation of the frequency for
each bin should be 500 if the test is unbiased.
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TABLE 2. Rejection probabilities at ® D 0:05.

¹1 ¡ ¹3

5 1

Trees Trees

1,2 3–10 #T 1,2 3–10 #T

0

Trees
1–10 #T

BPi 0.053 0.999 1.9 0.250 0.649 4.3 0.538 4.6
KHi 0.052 0.995 1.9 0.086 0.348 7.0 0.237 7.6
AUi 0.049 0.994 2.0 0.057 0.287 7.6 0.190 8.1
SHi 0.008 0.954 2.4 0.014 0.097 9.2 0.050 9.5
ZLi 0.046 0.904 2.7 0.008 0.054 9.5 0.027 9.7

PrfPi < ®g was calculated from 10,000 repetitions, and the results were averaged over the trees having the same ¹i value. #T
indicates the average number of trees in the con�dence set.

observations on BP1, KH1, and AU1 indicate
that

PrfBP1 < ®g ¸ PrfKH1 < ®g
¸ PrfAU1 < ®g ¼ ®:

This agrees with the asymptotic argument of
the smooth boundary. These P-values are ex-
pressed by Eq. 12 with · values of ¡1, 0, and
1, respectively, and thus

BP1 · KH1 · AU1

because region H1 is convex, and the cur-
vature c is often positive in the selection
problem.

The distribution of SH1 is still skewed to
the right for ¹1 ¡ ¹3 D 1. The rejection proba-
bility of tree-1 for SH1 is 0.014 at ® D 0:05, and
that for ZL1 is even smaller. This is not what
one may wish, because the rejection proba-
bility of the wrong trees is also smaller than
those of the other three methods, and the con-
�dence set of trees becomes larger; the SH test
and the ZLtest still overestimate the selection
bias in this case.

When ¹1 ¡ ¹3 D 0, all 10 trees are equally
good with respect to ¹i values. As explained
earlier, that does not imply that all 10 trees
are correct, but that the misspeci�cation gave
the wrong trees the same ¹i values as ¹1.
This is rather an extreme situation in prac-
tice. The distributions of BP1, KH1, and AU1
are left-skewed, and their rejection probabil-
ities for tree-1 are much larger than ® D 0:05.
Thus, these three tests are invalid in this case,
whereas the ZL test still appears conserva-
tive. On the other hand, the SH test works
perfectly here. SH1 is distributed uniformly,
and the rejection probability becomes 0.050.

This is no surprise, because the SH test as-
sumes the con�guration ¹1 D ¢ ¢ ¢ D ¹10 to es-
timate the selection bias. This is the least fa-
vorable con�guration at which the selection
bias is maximized.

The failure of the AU test comes from the
approximation of the nonsmooth H1 bound-
ary by the smooth boundary, as shown in
Figure 1. As ¹ approaches the least favorable
con�guration, the extent of the failure as well
as the selection bias increases. At this point
the AU test underestimates the selection bias.
The AU test is not exactly unbiased; it is
only approximately unbiased, and it works
well in cases where the selection bias is not
extreme.

Analysis of Mammalian Mt Protein
Sequences

The mammalian mt protein sequences
from Shimodaira and Hasegawa (1999) were
reanalyzed by using the same model of evo-
lution as in that paper. They include the
mt protein sequences of N D 3,414 amino
acids for six mammalian species (human,
seal, cow, rabbit, mouse, and opossum). The
software package PAML (Yang, 1997) was
used tocalculate the site-wise log-likelihoods
for the trees. The mtREV model (Adachi
and Hasegawa, 1996b) was used for amino
acid substitutions, and the site-heterogeneity
was modeled by the discrete-gamma distri-
bution (Yang, 1996). The results are shown in
Tables 3–5.

The clade fseal, cowg was signi�cantly
supported in preliminary analysis, and thus
only the 15 bifurcating trees with this clade
are considered initially. Table 3 is essentially
a reproduction of Table 1 of Shimodaira and
Hasegawa (1999), except for the newly added
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TABLE 3. Fifteen trees and the P-values of mammalian sequences.

Tree Ti PPi BPi KHi AUi SHi WSHi Tree form

1 ¡2.7 0.934 0.579 0.639 0.789 0.944 0.948 (((1(23))4)56)
2 2.7 0.065 0.312 0.361 0.516 0.799 0.791 ((1((23)4))56)
3 7.4 0.001 0.036 0.122 0.114 0.575 0.422 (((14)(23))56)
4 17.6 0.000 0.013 0.044 0.075 0.178 0.210 ((1(23))(45)6)
5 18.9 0.000 0.035 0.066 0.128 0.149 0.299 (1((23)(45))6)
6 20.1 0.000 0.005 0.049 0.029 0.114 0.105 (1(((23)4)5)6)
7 20.6 0.000 0.017 0.051 0.101 0.112 0.252 ((1(45))(23)6)
8 22.2 0.000 0.001 0.032 0.009 0.073 0.050 ((15)((23)4)6)
9 25.4 0.000 0.000 0.003 0.000 0.032 0.015 (((1(23))5)46)

10 26.3 0.000 0.003 0.019 0.028 0.034 0.124 (((15)4)(23)6)
11 28.9 0.000 0.000 0.010 0.003 0.018 0.069 (((14)5)(23)6)
12 31.6 0.000 0.000 0.003 0.001 0.006 0.033 (((15)(23))46)
13 31.7 0.000 0.000 0.003 0.001 0.006 0.034 (1(((23)5)4)6)
14 34.7 0.000 0.000 0.001 0.005 0.003 0.013 ((14)((23)5)6)
15 36.2 0.000 0.000 0.001 0.002 0.002 0.009 ((1((23)5))46)

Considered are the 15 trees with the clade of seal and cow, numbered by increasing order of Ti , the log-likelihood difference from
the largest among the others (see Eq. 23). The log-likelihood values were calculated by PAML (Yang, 1997) software, and all the
P-values were calculated by CONSEL (Shimodaira and Hasegawa, 2001) software. PP denotes the approximate Bayesian posterior
probability taken from Table 1 of Shimodaira (2001). BP, KH, SH, and WSH were calculated from B D 10,000 replicates of r D 1. AU
was calculated from the multiscale bootstrap with total

P
Bk D 100,000. The SH test and WSH (the weighted SH test) are referred to

as MC and MS, respectively, in Shimodaira and Hasegawa (1999). The P-values that are not signi�cant at ® D 0:05 are emphasized
in bold type. The labels for the taxa used in the tree forms are 1 D Homo sapiens (human), 2 D Phoca vitulina (seal), 3 D Bos taurus
(cow), 4 D Oryctolagus cuniculus (rabbit), 5 D Mus musculus (mouse), and 6 D Didelphis virginiana (opossum).

PPi and AUi columns. PPi is the approximate
Bayesian posterior probability (PP) taken
from Table 1 of Shimodaira (2001); the PP val-
ues are calculated by the Bayesian informa-
tion criterion (BIC) approximation (Schwarz,
1978; Hasegawa and Kishino, 1989). For
AUi , the MLE is used to estimate d and
c in Step 3 (above). The WLS gave prac-
tically the same results. The columns BPi ,
KHi , SHi , and WSHi correspond to columns
BP, KH, MC, and MS, respectively, of
Shimodaira and Hasegawa (1999). The dif-
ferences in the P-values between the two ta-
bles are due to the seeds of the random num-
ber generation. WSH denotes the weighted
SH test suggested in Remark 4 of Shimodaira

TABLE 4. Ten edges and the P-values of mammalian sequences.

Edge Te PPe BPe KHe AUe SHe WSHe Clade Trees

1 ¡17.6 1.000 0.927 0.956 0.954 0.994 0.991 f 1234 g 1, 2, 3
2 ¡2.7 0.934 0.592 0.639 0.749 0.910 0.921 f 123 g 1, 4, 9
3 2.7 0.065 0.318 0.361 0.469 0.754 0.735 f 234 g 2, 6, 8
4 7.4 0.001 0.036 0.122 0.111 0.567 0.411 f 14g 3, 11, 14
5 17.6 0.000 0.065 0.044 0.075 0.177 0.253 f 45g 4, 5, 7
6 18.9 0.000 0.040 0.066 0.088 0.147 0.277 f 2345 g 5, 6, 13
7 20.6 0.000 0.019 0.051 0.070 0.112 0.227 f 145 g 7, 10, 11
8 22.2 0.000 0.004 0.032 0.016 0.072 0.113 f 15g 8, 10, 12
9 25.4 0.000 0.000 0.003 0.000 0.032 0.031 f 1235 g 9, 12, 15

10 31.7 0.000 0.000 0.003 0.000 0.006 0.032 f 235 g 13, 14, 15

Listed are 10 edges that actively specify the 15 trees of Table 3, numbered by increasing order of Te D min
i2Se

Te, i (see Eq. 21). For
each edge, the P-values and the clade are shown. The list of trees including the edge-e , denoted Se earlier, is also given. KHe is the
KH test of Te . There are 26¡1 ¡ 1 D 31 possible edges for the six taxa. In addition to the 10 edges, 15 edges actively specify the possible
105 trees of the six taxa. There are six other edges for clades f 1 g , f 2g , f 3 g , f 4 g , f 5g , and f 12345 g , which are always included in
the trees.

and Hasegawa (1999). In the WSH test, each
difference Yj ¡ Yi is divided by the estimate
of the standard error so that these terms are
weighted equally for taking the maximum in
Eq. 23.

The con�dence set of trees obtained by the
AU test at ® D 0:05 is f1, 2, 3, 4, 5, 7g, which
is between those values obtained by the KH
test and those by the SH test. The KH test
rejects tree-4, whereas the SH test does not
reject trees-6 and -8. If we want to be safe,
we should take the eight trees obtained by
the SH test; this assumes maximum selection
bias. If we do not need to be so cautious, we
take the six trees obtained by the AU test; this
assumes moderate selection bias. If we are
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TABLE 5. Best 20 of 105 trees of the mammalian sequences.

Tree Ti PPi BPi KHi AUi SHi WSHi Tree form

1 ¡2.7 0.934 0.579 0.639 0.792 0.989 0.992 (((1(23))4)56)
2 2.7 0.065 0.312 0.361 0.517 0.930 0.908 ((1((23)4))56)
3 7.4 0.001 0.036 0.122 0.115 0.841 0.594 (((14)(23))56)
4 17.6 0.000 0.013 0.044 0.076 0.577 0.338 ((1(23))(45)6)
5 18.9 0.000 0.035 0.066 0.131 0.549 0.449 (1((23)(45))6)
6 20.1 0.000 0.005 0.049 0.030 0.506 0.175 (1(((23)4)5)6)
7 20.6 0.000 0.017 0.051 0.103 0.499 0.390 ((1(45))(23)6)
8 22.2 0.000 0.001 0.032 0.009 0.458 0.082 ((15)((23)4)6)
9 25.4 0.000 0.000 0.003 0.000 0.384 0.024 (((1(23))5)46)

10 26.3 0.000 0.003 0.019 0.028 0.363 0.193 (((15)4)(23)6)
11 28.9 0.000 0.000 0.010 0.003 0.309 0.108 (((14)5)(23)6)
12 31.6 0.000 0.000 0.003 0.001 0.258 0.048 (((15)(23))46)
13 31.7 0.000 0.000 0.003 0.001 0.255 0.052 (1(((23)5)4)6)
14 34.7 0.000 0.000 0.001 0.005 0.203 0.017 ((14)((23)5)6)
15 36.2 0.000 0.000 0.001 0.002 0.177 0.011 ((1((23)5))46)
16 48.5 0.000 0.000 0.000 0.001 0.050 0.003 ((((13)2)4)56)
17 49.2 0.000 0.000 0.000 0.000 0.047 0.002 ((((12)3)4)56)
18 65.8 0.000 0.000 0.000 0.000 0.004 0.002 (((13)2)(45)6)
19 65.9 0.000 0.000 0.000 0.000 0.005 0.002 (((12)3)(45)6)
20 67.4 0.000 0.000 0.000 0.000 0.003 0.003 (((1(45))2)36)

Tree-21 through -105 have marginally small P-values. Tree forms and bold emphasis as in Table 3.

brave enough, we take the �ve trees obtained
by the KH test; this assumes no selection bias.

ZLi values for the 15 trees in Table 3
are 0.922, 0.711, 0.270, 0.249, 0.336, 0.112,
0.382, 0.071, 0.003, 0.159, 0.028, 0.021, 0.004,
0.167, and 0.027, and the con�dence set is
f1, 2, 3, 4, 5, 6, 7, 8, 10, 14g. The ZL test ap-
pears to be too conservative in this case. On
the other hand, the con�dence set obtained
by BP values consists of only two trees, pre-
sumably indicating overcon�dence in these
particular, but wrong, trees; tree-7 is best sup-
ported as the ML tree in recent analyses using
the updated sequence data (Cao et al., 2000;
Madsen et al., 2001; Murphy et al., 2001). The
PP values are even more extreme.

There are 10 possible hypotheses of the
monophyly for the 15 trees; their P-values
are shown in Table 4. The AU test rejects
edges-8, -9, and -10, which correspond to the
clades fhuman, mouseg, fhuman, seal, cow,
mouseg, and fseal, cow, mouseg. In addition,
the KH test rejects edge-5, corresponding to
the controversial clade frabbit, mouseg for
Glires (Lagomorpha C Rodentia), whereas
the SH test does not reject edge-8, which
corresponds to fhuman, mouseg. The differ-
ences in conclusions re�ect the assumptions
as to the extent of the selection bias.

Three edges in Table 4 are rejected by
the AU test with AUe < 0:05. However, this
does not necessarily imply strong support for
the other seven edges. In fact, only edge-1

is strongly supported by the AU test. The
AU P-value for the hypothesis that edge-e
is not true is 1 ¡ AUe as described in the
Appendix, remark 12. This is signi�cant
only for edge-1 with 1 ¡ 0:954 D 0:046 <
0:05. Nothing can be stated with statistical
signi�cance for edges-2, -3, -4, -5, -6, and -7.

There seems to be inconsistency in the
above argument. The strong support for
edge-1 is incompatible with nonrejection of
edges-5, -6, and -7. Given the logical relations
among the hypotheses, special consideration
is necessary. In fact, edge-1 is not strongly
supported any more when all the He and the
reverse of He , e D 1, : : : , m, are tested simul-
taneously (see Appendix remark 13).

Tree selection changes interestingly when
all 105 possible trees of the six taxa are com-
pared. Comparing Table 5 with Table 3 shows
almost no change for BPi , KHi , and AUi , but
SHi and WSHi change signi�cantly. The SH
test selected 8 of the 15 trees, but 16 of the
105 trees; Strimmer and Rambaut (2001) also
calculated the con�dence set in their Table 1.
The effect is not as large in the WSH test,
where the number of selected trees changed
from 10 to 11. The increase in the size of
the con�dence set observed in the SH and
WSH tests is attributable to the nature of
the multiple comparisons. No matter how
bad the added trees are, the size of the con-
�dence set increases as the number of the
candidate trees grows larger. The effect is
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compensated for, although not completely,
by weighting.

CONCLUSIONS

Having discussed several tests and associ-
ated P-values, I summarize here recommen-
dations as to when they are best used.

The AU test is recommended for general
tree selection problems. It satis�es the re-
quirement for unbiasedness at least approx-
imately and thus controls for type-1 error in
most cases. The AU con�dence set is not sus-
ceptible to an increase in the number of can-
didate trees. However, the AU test must be
used with caution when many of the best
trees are nearly equally as good; one might
miss the true tree in the con�dence set by
having overcon�dence in the wrong trees. A
breakdown of the AU test may be detected
by the diagnostics mentioned in Appendix
remark 10.

The SH test is safe to use and is a good op-
tion when the number of candidate trees is
not very large. Control of type-1 error is ex-
cellent though conservative, and the conclu-
sions are drawn safely; one will not miss the
true tree in the con�dence set, which is often
larger than that for the AU test. A practical
dif�culty is that the SH test is very suscepti-
ble to an increase in the number of candidate
trees. This is alleviated by weighting in the
WSH test.

The AU test is computationally practical
for trees numbering only a few thousand
when the ML is used as the criterion. When
more trees are compared, the KH test is the
only option. After screening bad trees by the
KH test at small ® values, say, 0.001, apply
the AU test. This two-step procedure may
make sense, because the AU test is not af-
fected very much by the number of candidate
trees.

The AU test is applicable to other prob-
lems when the BP values are available. For
example, it can be applied directly to tree se-
lection based on other criteria such as parsi-
mony, minimum evolution, or least squares.
One has to count only how many times each
tree is selected for sets of the replicates of
several sequence lengths, and then proceed
to step 3, as described earlier. The AU test
is not con�ned to the selection problem; it is
useful for general hypothesis testing of re-
gions. The calculation of the con�dence lim-
its of a real parameter, say, ¹i , is also straight-

forward by the inversion of the signi�cance
tests, as implemented in the CONSEL soft-
ware program.

ACKNOWLEDGMENTS

The idea of the multiscale bootstrap came from a dis-
cussion with Ziheng Yang and was developed during
my stay at Stanford University arranged by Brad Efron.
The biological arguments are mostly those of Masami
Hasegawa. Constructive comments were provided by
the associate editor Nick Goldman and anonymous re-
viewers. I thank them as well as Joe Felsenstein, Hirohisa
Kishino, and Susan Holmes for helpful discussions on
phylogenetic problems. This work was supported by a
Grant-in-Aid from JSPS (12780179) .

REFERENCES

ADACHI, J., AND M. HASEGAWA. 1996a. MOLPHY ver-
sion 2.3: Programs for molecular phylogenetics based
on maximum likelihood. Comput. Sci. Monogr. 28.
Institute of Statistical Mathematics, Tokyo.

ADACHI, J., AND M. HASEGAWA. 1996b. Model of amino
acid substitution in proteins encoded by mitochon-
drial DNA. J. Mol. Evol. 42:459–468.

BUCKLEY, T. R., C. SIMON, H. SHIMODAIRA, AND G. K.
CHAMBERS. 2001. Evaluating hypotheses on the ori-
gin and evolution of the New Zealand alpine cicadas
(Maoricicada) using multiple-comparison tests of tree
topology. Mol. Biol. Evol. 18:223–234.

CAO, Y., M. FUJIWARA, M. NIKAIDO, N. OKADA, AND
M. HASEGAWA. 2000. Interordinal relationships and
timescale of eutherian evolution as inferred from mi-
tochondrial genome data. Gene 259:149–158.

CAVALLI-SFORZA, L. L., AND A. W. F. EDWARDS. 1967.
Phylogenetic analysis: Models and estimation proce-
dures. Evolution 32:550–570.

DAVISON, A. C., AND D. V. HINKLEY. 1997. Boot-
strap methods and their application. Cambridge Univ.
Press, Cambridge, UK.

EFRON, B. 1979. Bootstrap methods: Another look at the
jackknife. Ann. Statist. 7:1–26.

EFRON, B. 1985. Bootstrap con�dence intervals for a class
of parametric problems. Biometrika 72:45–58.

EFRON, B., E. HALLORAN, AND S. HOLMES. 1996. Boot-
strap con�dence levels for phylogenetic trees. Proc.
Natl. Acad. Sci. USA 93:13429–13434.

EFRON, B., AND R. TIBSHIRANI. 1998. The problem of
regions. Ann. Statist. 26:1687–1718.

FELSENSTEIN, J. 1981. Evolutionary trees from DNA se-
quences: A maximum likelihood approach. J. Mol.
Evol. 17:368–376.

FELSENSTEIN, J. 1985. Con�dence limits on phylogenies:
An approach using the bootstrap. Evolution 39:783–
791.

FELSENSTEIN, J., AND H. KISHINO . 1993. Is there some-
thing wrong with the bootstrap on phylogenies? A
reply to Hillis and Bull. Syst. Biol. 42:193–200.

GOLDMAN, N., J. P. ANDERSON, AND A. G. RODRIGO.
2000. Likelihood-based tests of topologies in phyloge-
netics. Syst. Biol. 49:652–670.

HASEGAWA, M., AND H. KISHINO . 1989. Con�dence
limits on the maximum-likelihood estimate of the



506 SYSTEMATIC BIOLOGY VOL. 51

hominoid tree from mitochondrial-DNA sequences.
Evolution 43:672–677.

HASEGAWA, M., AND H. KISHINO . 1994. Accuracies of
the simple methods for estimating the bootstrap prob-
ability of a maximum-likelihood tree. Mol. Biol. Evol.
11:142–145.

HILLIS , D., AND J. BULL. 1993. An empirical test of boot-
strapping asa method for assessing con�dence in phy-
logenetic analysis. Syst. Biol. 42:182–192.

KISHINO , H., AND M. HASEGAWA. 1989. Evaluation of
the maximum-likelihood estimate of the evolution-
ary tree topologies from DNA sequence data, and the
branching order in Hominoidea. J. Mol. Evol. 29:170–
179.

KISHINO , H., T. MIYATA, AND M. HASEGAWA. 1990.
Maximum likelihood inference of protein phylogeny
and the origin of chloroplasts. J. Mol. Evol. 30:151–160.

LEHMANN, E. L. 1952. Testing multiparameter hypothe-
ses. Ann. Math. Stat. 23:541–552.

LEHMANN, E. L. 1986. Testing statistical hypotheses,
2nd edition. Wiley, New York.

LINHART, H. 1988. A test whether two AIC’s differ sig-
ni�cantly. South Afr. Stat. J. 22:153–161.

MADSEN, O., M. SCALLY, C. J. DOUADY, D. J. KAO,
R. W. DEBRY, R. ADKINS , H. M. AMRINE, M. J.
STANHOPE, W. W. DE JONG, AND M. S. SPRINGER.
2001. Parallel adaptive radiations in two major clades
of placental mammals. Nature 409:610–614.

MARCUS, R., E. PERITZ, AND K. R. GABRIEL. 1976. On
closed testing procedures with special reference to or-
dered analysis of variance. Biometrika 63:655–660.

MURPHY, W. J., E. EIZIRIK, W. E. JOHNSON, Y. P.
ZHANG , O. A. RYDER, AND S. J. O’BRIEN. 2001.
Molecular phylogenetics and the origins of placental
mammals. Nature 409:614–618.

SANDERSON, M. J., AND M. F. WOJCIECHOWSKI. 2000.
Improved bootstrap con�dence limits in large-scale
phylogenies, with an example from Neo-Astragalus
(Leguminosae). Syst. Biol. 49:671–685.

SCHWARZ, G. 1978. Estimating the dimension of a
model. Ann. Stat. 6:461–464.

SHIMODAIRA, H. 1993. A model search technique based
on con�dence set and map of models. Proc. Inst. Stat.
Math. 41:131–147 (in Japanese).

SHIMODAIRA, H. 1998. An application of multiple
comparison techniques to model selection. Ann. Inst.
Stat. Math. 50:1–13.

SHIMODAIRA, H. 2000a. Another calculation of the
p-value for the problem of regions using the scaled
bootstrap resamplings. Tech. Rep. No. 2000-35.
Stanford Univ., Palo Alto, California.

SHIMODAIRA, H. 2000b. Approximately unbiased one-
sided tests of the maximum of normal means using
iterated bootstrap corrections. Tech. Rep. No. 2000-7.
Stanford Univ., Palo Alto, California.

SHIMODAIRA, H. 2001. Multiple comparisons of log-
likelihoods and combining nonnested models with
applications to phylogenetic tree selection. Commun.
Stat. A Theory Methods 30:1751–1772.

SHIMODAIRA, H., AND M. HASEGAWA. 1999. Multiple
comparisons of log-likelihoods with applications to
phylogenetic inference. Mol. Biol. Evol. 16:1114–1116.

SHIMODAIRA, H., AND M. HASEGAWA. 2001. CONSEL:
For assessing the con�dence of phylogenetic tree se-
lection. Bioinformatics 17:1246–1247.

STRIMMER, K., AND A. RAMBAUT. 2002. Inferring con�-
dence sets of possibly misspeci�ed gene trees. Proc.
R. Soc. London B 269:137–142.

SWOFFORD, D. L. 1998. PAUP*. Phylogenetic analysis
using parsimony (*and other methods). Version 4.
Sinauer Associates, Sunderland, Massachusetts.

VUONG, Q. H. 1989. Likelihood ratio tests for model
selection and non-nested hypotheses. Econometrica
57:307–333.

YANG, Z. 1996. Among-site rate variation and its impact
on phylogenetic analyses. Trends Ecol. Evol. 11:367–
372.

YANG, Z. 1997. PAML: A program package for phy-
logenetic analysis by maximum likelihood. CABIOS
13:555–556.

YANG, Z. 2000. Complexity of the simplest phylogenetic
estimation problem. Proc. R. Soc. London B 267:109–
116.

ZHARKIKH, A., AND W.-H. LI. 1992. Statistical proper-
ties of bootstrap estimation of phylogenetic variability
from nucleotide sequences. I. Four taxa with a molec-
ular clock. Mol. Biol. Evol. 9:1119–1147.

ZHARKIKH, A. AND W.-H. LI. 1995. Estimation of con�-
dence in phylogeny: The complete-and-partial boot-
strap technique. Mol. Phylogenet. Evol. 4:44–63.

First submitted 23 Sep. 2001; Revision submitted 19 Jan.
2002; Final acceptance 5 Feb. 2002

Associate Editor: Nick Goldman

APPENDIX

This appendix is a collection of remarks and technical
details.

1. Monotone tests. Consider two vectors of log-
likelihoods Y and Y0 such that

Y0
j ¡ Yj ¸ Y0

1 ¡ Y1, j D 2, : : : , M,

where notations are de�ned in Methods (see Eqs. 1
and 3). To reject H1 , Y0 is regard as stronger evidence
than Y. H1 is rejected by Y0 if H1 is rejected by Y. This
property is said to be the monotonicity of the test.
It follows from Lehmann (1952) that the monotone
test with minimum bias is the WSH test. Thus, the
WSH test is the optimal method within the class of
the monotone tests. It also follows from Lehmann
(1952) that an exactly unbiased test does not exist
for the selection problem.

2. Consistency of tree selection. For two densities f (x)
and g(x), the Kullback–Leibler divergence is de-
�ned by D( f , g) D

R
f (x)(log f (x) ¡ log g(x)) dx ¸

0, which takes the minimum value zero only when
g(x) ´ f (x). In other words, the expected value of
the log-likelihood log g(x) under the true model f (x)
is maximized when g(x) ´ f (x). This implies that
the tree of the largest ¹i value, denoted tree-i0, rep-
resents the true history of evolution, provided one
of the M trees is correct and the probabilistic model
of the evolution is correctly speci�ed. For a given N0,
the tree selection selects tree-i¤ , which maximizes
Y¤

i . It follows from the law of large numbers that
Y¤

i converges to the expected value ¹i as N0 ! 1,
and thus the probability of selecting the true tree
converges to 1, that is, i¤ ! i0 , provided the trees
are identi�able, that is, i0 is uniquely de�ned. In
practice, the evolution model is misspeci�ed, but
the consistency still holds if the misspeci�cation is



2002 SHIMODAIRA—APPROXIMATELY UNBIASED TEST OF TREE SELECTION 507

minor, in which case the true tree has the largest
¹i value.

3. Shortcut to the AU test. It follows from Eqs. 10, 11, and
14 that another representation of AU1 is

AU1 D 8(28¡1(KH1) ¡ 8¡1(BP1)), (18)

which implies that many published results of tree se-
lection can be readily reanalyzed by the AU test with-
out using the multiscale bootstrap. Unfortunately,
Eq. 18 does not work very well, because Eq. 10 is
not a very precise approximation for the selection
problem.

4. Curvature of the boundary. One can take the local
coordinates (u1 , : : : , uM¡1, º) at ¹̂ so that ¹̂ is ex-
pressed as (0, : : : , 0), the observed vector Y is
expressed as (0, : : : , 0, d), and the hypersurface is ex-
pressed as º D ¡(¸1u2

1 C ¢ ¢ ¢ C ¸M¡1u2
M¡1) C O(N¡1).

The geometric constants are then given by c1 D
¸1 C ¢ ¢ ¢ C ¸M¡1 and c2 D ¸2

1 C ¢ ¢ ¢ C ¸2
M¡1 .

5. ZL test. Zharkikh and Li (1995) provided a P-value
closely related to that of the AU test. Their complete-
and-partial bootstrap is equivalent to the multiscale
bootstrap with K D 2 and can be reformulated for
any K ¸ 2. First, Eq. 16 here is replaced by their
Eq. 34, expressed as

BP1(r) D 1 ¡ 8(Z
p

r ¡ 8¡1(1=M0)
p

1 C r), (19)

where Z, M0, and r correspond to the ¡Z, K ,
and 1=r , respectively, of Zharkikh and Li. By the
WLS method of step 3, Z and 8¡1(1=M0) are esti-
mated, and the P-value is given by ZL1 D 1 ¡ 8(Z),
which was denoted W1 . Comparing Eqs. 16 and 19,
and considering the Taylor expansion around r D 1,
yields Z D d ¡ 3c and 8¡1(1=M0) D ¡2

p
2c , and thus

· D 3.
6. Choice of scale parameters. The choice of scale

parameters,—K , rk , and Bk —is another practical is-
sue and is a matter of the experimental design. For
example, the computational cost of the multiscale
bootstrap will be expressed as

PK
kD1 ak Bk , using as

the cost per sample ak > 0, and the optimal choice of
the scale parameters is sought to minimize the stan-
dard error of AU1 while �xing the cost. I tried this
for a simple problem by a numerical optimization
using d and c obtained by a preliminary multiscale
bootstrap; the standard error was minimized when
K D 2, r1 is close to zero, and r2 is slightly larger than
unity. However, taking a large range of rk leads to a
breakdown of the theory, and K ¸ 3 is necessary to
detect it. The optimal choice is not simple in practice.
Instead, a �xed set of scale parameters is used in the
examples.

7. Effective number of replicates. Considering binomial
sampling, the standard error of BP1 is

se(BP1) D
p

BP1(1 ¡ BP1)=B,

where B is the number of the bootstrap replicates for
r D 1. On the other hand, the standard error of AU1

is given by

se(AU1) D Á(8¡1(AU1))
p

º11 ¡ 2º12 C º22,

where º11 , º12 , º22 are the elements of the matrix

³
KX

kD1

º¡1
k

³
rk 1

1 r ¡1
k

´́ ¡1

:

This is converted to theeffectivenumber of replicates

Beff D
AU1(1 ¡ AU1)

se(AU1)2
,

which represents the number of replicates as if AU1

were obtained the same way as BP1 . In the simu-
lation for the normal model with the con�guration
¹1 ¡ ¹3 D 1, the average of the Beff for tree-1 is 2,126,
when the actual total number of replicates

PK
kD1 Bk

is 100,000. This further reduces to 781 if only those
having AU1 < 0:1 are averaged. This implies that
the multiscale bootstrap needed a hundred times
more bootstrap replicates than the usual bootstrap to
have the same standard error. In this sense, the other
implementation of the AU test given by Efron et al.
(1996) may be advantageous to the multiscale boot-
strap; it requires a much smaller number of repli-
cates once ¹̂ is obtained. However, the computation
appears not to be a practical problem currently if
an ef�cient method such as RELL is used for resam-
pling. Using a 400 MHz pentium computer took less
than 30 min to obtain all the P-values of the mam-
malian sequences.

8. Rescaling approximation. For a large problem, the fol-
lowing rescaling approximation is useful to reduce
the computation of multiscale bootstrap. First, gen-
erate Y¤b , b D 1, : : : , B0, with, say, r0 D 1 and B0 D
10, 000. Then, in step 2 (above), we calculate

Y¤b (rk) D Ȳ C
p

r0=rk (Y¤b ¡ Ȳ), b D 1, : : : , B0,

where Ȳ D
PB0

bD1 Y¤b=B0 , and Bk D B0 for k D
1, : : : , K . The total number of replicates is K B0,
but resampling is performed only B0 times. The P-
values calculated by this approximation are 0.798,
0.511, 0.130, 0.069, 0.110, 0.034, 0.124, 0.012, 0.000,
0.020, 0.000, 0.002, 0.000, 0.000, and 0.000 for the 15
trees in Table 3, and 0.958, 0.759, 0.461, 0.126, 0.071,
0.078, 0.076, 0.014, 0.001, and 0.000 for the 10 edges
in Table 4. Thus, the approximation gives practically
equivalent results but reduces the computation to
one tenth.

9. MLE of d and c. Step 3 may be replaced by the MLE
instead of the WLS. Parameters d and c are estimated
by maximizing the log-likelihood for the binomial
distributions

L(d, c) D
KX

kD1

Bk fBP1(rk) log ¼k(d, c)

C [1 ¡ BP1(rk)] log[1 ¡ ¼k (d, c)]g,

where ¼k (d, c) D 1 ¡ 8(d
p

rk C c =
p

rk). The
Newton–Raphson method is used for the optimiza-
tion, with the initial value obtained by the WLS.
Although the MLE and the WLS often provide
practically equivalent results, the MLE may perform
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better than the WLS when BP1 is very close to
zero or unity. Both the WLS and the MLE are
implemented in the CONSEL software application .

10. Diagnosing the breakdown of the theory. A large RSS
value in step 3 indicates a breakdown of the asymp-
totic theory; RSS is distributed as Â 2 with K ¡ 2 de-
grees of freedom.

11. SH test for edge selection. The SHtest of He is improved
by the following argument, but the P-value will not
differ much from that obtained by Eq. 17. First note
that the hypothesis of edge-e is expressed as

He : [i2Se f¹i ¸ ¹ j , j 62 Seg, (20)

where the subscript j runs through 1, : : : , M, except
for the elements in Se . The SH test applied to each
member in the union of Eq. 20 uses the test statistic

Te, i D max
j 62Se

(Yj ¡ Yi ): (21)

The P-value corresponding to Te ,i , denoted Pe ,i ,
is calculated from the replicates of Y generated
with “centering” as described in Shimodaira and
Hasegawa (1999);

T¤ b
e ,i D max

j 62Se

¡¡
Y¤ b

j ¡ Ȳ j

¢
¡

¡
Y¤ b

i ¡ Ȳi

¢¢
,

where Ȳi D B¡1
PB

bD1 Y¤ b
i , or simply let Ȳi D Yi , and

thus

Pe , i D #fTe, i > T¤ b
e ,i , b D 1, : : : , Bg=B:

Because He is rejected if and only if all the members
in Eq. 20 are rejected, that is, Pe, i < ® for all i 2 Se ,
this yields the P-value of He

SHe D max
i2Se

Pe , i : (22)

Moreover this reduces to Eq. 17 if Eq. 21 is replaced
with the test statistic of the SH test for tree-i.

Ti D max
j 6Di

(Yj ¡ Yi ): (23)

12. Reversing hypothesis. The geometry of Figure 1 does
not change even if the roles of the null and al-
ternative hypotheses are exchanged but only the
signs of d are c are reversed. Thus, the generalized
AU P-value for the null hypothesis ¹ 62 H1 against
alternative ¹ 2 H1 is obtained as 1 ¡ AU1(·) from
Eq. 12. This almost obvious formula does not apply
to the SH and WSH tests, for which the least favor-
able con�guration is not the same for the reversed
problem.

13. A closed testing procedure. When tree-7, say, is true,
edges-5 and -7 as well as the reversed hypotheses
of edges-1, -2, -3, -4, -6, -8, -9, and -10 are true. The
type-1 family-wise error (FWE) rate is theprobability
of rejecting any of these true hypotheses. The AU
test controls the type-1 error rate for each of the true
hypotheses separately, but not simultaneously. The
closure method of Marcus et al. (1976) is applied to
the AU test for controlling the type-1 FWE through
simply using Eq. 17. The P-value for the reversed
hypothesis of edge-1 becomes 0.128, the maximum
of AUi , i D 4, : : : , 15.


