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APPROXIMATELY UNBIASED TESTS OF REGIONS USING
MULTISTEP-MULTISCALE BOOTSTRAP RESAMPLING1

BY HIDETOSHI SHIMODAIRA

Tokyo Institute of Technology

Approximately unbiased tests basedon bootstrap probabilities are con-
sidered for the exponential family of distributions with unknown expectation
parameter vector, where the null hypothesis is represented as an arbitrary-
shaped region with smooth boundaries. This problem has been discussed pre-
viously in Efron and Tibshirani [Ann. Statist. 26 (1998) 1687–1718], and a
correctedp-value with second-order asymptotic accuracy is calculated by the
two-level bootstrap of Efron, Halloran and Holmes [Proc. Natl. Acad. Sci.
U.S.A. 93 (1996) 13429–13434] based on the ABC bias correction of Efron
[J. Amer. Statist. Assoc. 82 (1987) 171–185]. Our argument is an extension
of their asymptotic theory, where the geometry, such as the signed distance
and the curvature of the boundary, plays an important role. We give another
calculation of the correctedp-value without finding the “nearest point” on the
boundary to the observation, which is required in the two-level bootstrap and
is an implementational burden in complicated problems. The key idea is to al-
ter the sample size of the replicated dataset from that of the observed dataset.
The frequency of the replicates falling in the region is counted for several
sample sizes, and then thep-value is calculated by looking at the change
in the frequencies along the changing sample sizes. This is the multiscale
bootstrap of Shimodaira [Systematic Biology 51 (2002) 492–508], which is
third-order accurate for the multivariate normal model. Here we introduce a
newly devised multistep-multiscale bootstrap, calculating a third-order accu-
ratep-value for the exponential family of distributions. In fact, ourp-value
is asymptotically equivalent to those obtained by the double bootstrap of
Hall [The Bootstrap and Edgeworth Expansion (1992) Springer, New York]
and the modified signed likelihood ratio of Barndorff-Nielsen [Biometrika
73 (1986) 307–322] ignoringO(n−3/2) terms, yet the computation is less
demanding and free from model specification. The algorithm is remarkably
simple despite complexity of the theory behind it. The differences of thep-
values are illustrated in simple examples, and the accuracies of the bootstrap
methods are shown in a systematic way.

1. Introduction. We start with a simple example of Efron and Tibshirani
(1998) to illustrate the issue to discuss. LetX1, . . . ,Xn be independentp-dimen-
sional multivariate normal vectors with mean vectorµ and covariance matrix
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identity Ip,

X1, . . . ,Xn ∼ Np(µ, Ip).

For given observed valuesx1, . . . , xn, let us assume that we would like to know
whether‖µ‖2 = µ2

1 + · · · + µ2
p ≤ 1 or not. The problem is also described in a

transformed variableY = √
n�X with meanη = √

nµ, wherex̄ = (x1+· · ·+xn)/n

is the sample average. We have observed ap-dimensional multivariate normal
vectory having unknown mean vectorη and covariance matrix the identity,

Y ∼ Np(η, Ip).(1.1)

Then the null hypothesis we are going to test isη ∈ R, with the spherical region

R = {η :‖η‖ ≤ √
n }.(1.2)

This problem is simple enough to give the exact answer. The frequentist
confidence level, namely, the probability value (p-value) for the spherical null
hypothesis is calculated as the probability of‖Y‖2 being greater than or equal
to the observed‖y‖2 assuming thatη is on the boundary∂R = {η :‖η‖ = √

n }
of R. The exactp-value is easily calculated knowing that‖Y‖2 is distributed as
the chi-square distribution with degrees of freedomp and noncentrality‖η‖2.

In this paper we are going to remove two restrictions in the above problem
for generalization. (i) The underlying probability model forY is the exponential
family of distributions, instead of the multivariate normal model; we denote the
density function with the expectation parameterη as

Y ∼ f (y;η).(1.3)

(ii) The null hypothesis will be represented as an arbitrarily-shaped regionR with
smooth boundaries, instead of the spherical region. The surface of∂R may be
represented as the Taylor series with coefficientsdab, eabc, . . .

�ηp = −dab�ηa�ηb − eabc�ηa�ηb�ηc + · · ·(1.4)

in the local coordinates(�η1, . . . ,�ηp) by taking the origin at a point on∂R
and rotating the axes properly. The summation convention such asdab�ηa�ηb =∑p−1

a=1
∑p−1

b=1 dab�ηa�ηb will be used, where the indicesa, b, . . . may run through
1, . . . , p − 1 and i, j, . . . may run though 1, . . . , p when used as subscripts or
superscripts forp-dimensional vectors. The axes are taken so that�η1, . . . ,�ηp−1
are for the tangent space of the surface, and�ηp is for its orthogonal space
taken positive in the direction pointing away fromR. This general setting is the
“problem of regions” discussed previously in Efron and Tibshirani (1998), and our
argument is an extension of their asymptotic theory, where the geometry, such as
the signed distance and the curvature of the boundary, plays an important role.

Since the exactp-value is available only for special cases, we will discuss
several bootstrap methods to calculate approximatep-values fromy under the
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assumptions (i) and (ii) above. Letα denote a specified significance level, and
α̂(y) denote an approximatep-value. A large value of̂α(y) may indicate evidence
to support the null hypothesisη ∈ R. On the other hand, if̂α(y) < α is observed,
then we reject the null hypothesis and conclude thatη /∈ R. The hypothesis test of
R is said to beunbiased if the rejection probability is equal toα wheneverη ∈ ∂R.
The approximatep-value is said to bekth order accurate if the asymptotic bias is
of orderO(n−k/2), that is,

Pr{α̂(Y ) < α;η} = α + O(n−k/2), η ∈ ∂R,(1.5)

holds for 0< α < 1. For sufficiently largen, approximately unbiasedp-values
of higher-order accuracy are considered to be better than those of lower-order
accuracy.

We will not specify the probabilistic model or the shape of the region explicitly
in the calculation of thep-value, but only assume that a mechanism is available to
us for generating the bootstrap replicates and identifying whether the outcomes
are in the region or not. This setting is important for complicated practical
applications, where the exactp-value is not available and, thus, bootstrap methods
are used for approximation. The phylogenetic tree selection discussed in Efron,
Halloran and Holmes (1996) and Shimodaira (2002) is a typical case; the
history of evolution represented as a tree is inferred by a model-based clustering
of the DNA sequences of organisms, where we are given complex computer
software for inferring the tree from a dataset. For calculatingp-values of the
hypothetical evolutionary trees, we can easily run bootstrap simulations, although
computationally demanding, by repeatedly applying the software to replicated
datasets.

We confine our attention to the parametric bootstrap of continuous random
vectors for mathematical simplicity. We also assume that the boundary of the
region is a smooth surface. In practical applications, however, it is often the case
that the nonparametric bootstrap is employed, the random vector is discrete and the
boundary is nonsmooth. Regions with nonsmooth boundaries, in particular, may
lead to serious difficulty as discussed in Perlman and Wu (1999, 2003). Further
study is needed to bridge these gaps between the theory and practice.

The frequency of the bootstrap replicates falling in the region, namely, the
bootstrap probability, has been used widely since its application to phylogenetic
tree selection in Felsenstein (1985). This is also named “empirical strength
probability” of R in Liu and Singh (1997), where a modification for nonsmooth
boundary is discussed as well. The bootstrap probability is, however, biased
as an approximation to the exactp-value and, thus, thetwo-level bootstrap of
Efron, Halloran and Holmes (1996) and Efron and Tibshirani (1998) is developed
to improve the accuracy. Under the assumptions (i) and (ii) above, the two-
level bootstrap calculates a second-order accuratep-value, whereas the bootstrap
probability is only first-order accurate.
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The bias of the bootstrap probability mainly arises from the curvature of∂R.
The two-level bootstrap estimates the curvature for bias correction, where the
curvature is estimated by generating second-level replicates aroundη̂(y). Here
η̂(y) denotes the maximum likelihood estimate forη restricted to∂R. η̂(y) is the
nearest point on∂R to y for (1.1). For the spherical region,η̂(y) = √

ny/‖y‖
is easily obtained, but̂η(y) must be obtained by numerical search in general,
leading to an implementational burden in complex problems. This motivated our
development of a new method.

Themultiscale bootstrap is developed in Shimodaira (2002) to calculate another
bias correctedp-value. It does not requirêη(y). Instead, the bootstrap probabilities
are calculated for sets of bootstrap replicates with several sample sizes which may
differ from that of the observed data. This, in effect, alters the scale parameter of
the replicates (Figure 1). The key idea is to estimate the curvature from the change
in the bootstrap probabilities along varying sample sizes. The correctedp-value
is third-order accurate for any arbitrarily-shaped region with smooth boundaries
under the multivariate normal model. The normality assumption is not as restrictive
as it might look at first, because the procedure is transformation-invariant and
should work fine if there exists a transformation from the dataset to the normal
Y and if the null hypothesis is represented as a region ofη. We do not have to
know what the transformation is. However, it becomes only first-order accurate if
there is no such transformation to (1.1) but only one to (1.3).

The multiscale bootstrap can be used easily for complex problems. It is as
easy as the usual bootstrap. We only have to change the sample size of the

FIG. 1. Multiscale bootstrap. The three circles with dashed lines indicate the conditional
distributions of the bootstrap replicates with mean y and scales τ = 1/

√
2,1,

√
2. In this particular

configuration, the bootstrap probability may increase by halving the sample size to alter τ = 1 to√
2, and may decrease by doubling the sample size to alter τ = 1 to 1/

√
2.
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bootstrap replicates, and apply a regression fit to the bootstrap probabilities.
The bias correctedp-value is calculated from the slope of the regression curve
(Figure 2). This procedure is implemented in computer software [Shimodaira and
Hasegawa (2001)] for phylogenetic tree selection, and is also applied to gene
network estimation from microarray expression profiles [Kamimura et al. (2003)].
In these applications, the multiscale bootstrap can calculate thep-values for many
related hypotheses at the same time; we do not have to run time-consuming
bootstrap simulations separately for these hypotheses. For example, biologists are
interested in the monophyletic hypothesis that some specified species constitute a
cluster in the phylogenetic tree, and there are many such hypotheses for groups of
species. The bootstrap probabilities for these hypotheses are obtained at the same
time from a single run of bootstrap simulation for each scale. We only have to
apply the regression fit separately to the multiscale bootstrap probabilities of each
hypothesis.

In this paper we provide the theoretical foundation of the multiscale bootstrap,
and introduce a newly devisedmultistep-multiscale bootstrap resampling. This
method calculates an approximately unbiasedp-value with third-order asymptotic
accuracy under the assumptions (i) and (ii). The previously developed method of
Shimodaira (2002) corresponds to a special case of the new method, that is, the
one-step multiscale bootstrap.

For explaining the bootstrap methods, a rather intuitive argument is given in
Sections 2 to 6 using simple examples. A more formal argument is given in
Section 7, and the technical details are given in a supporting document [Shimodaira
(2004)]. We introduce amodified signed distance, and give a unified approach to
the asymptotic analysis of the bootstrap methods using Edgeworth series, as well
as the tube formula of Weyl (1939). Third-order accuracy is also shown there for
thep-value computed by the modified signed likelihood ratio [Barndorff-Nielsen
(1986)], which requires the analytic expression of the likelihood function, and for
thep-value computed by the double bootstrap [Hall (1992)], which requires a huge
number of replicates, as well as computation ofη̂(y). The multistep-multiscale
bootstrap method requires only the bootstrap mechanism for generating replicates
aroundy, inheriting the simplicity from the one-step multiscale bootstrap. The
price for higher-order accuracy and simpler implementation is a large number
of replicates, which can be as large as that of the double bootstrap. These three
p-values are, in fact, shown to be equivalent ignoringO(n−3/2) terms.

Our argument may not be justified unless the assumptions (i) and (ii) hold.
We are not sure yet how robust the multistep-multiscale bootstrap method is
under misspecifications of the exponential family model. It is shown at the end
of Section 4, however, that the one-step method adjusts the bias halfway, though
not completely, under misspecifications of the normal model. A simulation study
in Shimodaira (2002) shows that the bias of the one-step method under the normal
model is very small even if the boundary is piecewise smooth, but the bias becomes
larger asη moves closer to nonsmooth points on the boundary.
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2. Two-level bootstrap resampling. Although our ultimate goal is to get
rid of the normal assumption, we use normality in this section to illustrate the
bootstrap methods, and besides (1.1), we also assume (1.2). For given observed
valuex̄, we consider the parametric bootstrap resampling

X∗
1, . . . ,X∗

n1
∼ Np(x̄, Ip).

Typically, the sample sizen1 of the replicated dataset should be equal ton, but
we reserve the generality of using any value forn1. The scaling factor of the
bootstrap,τ1 = √

n/n1, will be altered later in the multiscale bootstrap. Once
we specifyτ1, we may generateB, say 10,000, replicated datasets, and compute
the average�X∗ = (X∗

1 + · · · + X∗
n1

)/n1 for each replicate. A large value of the
frequency that‖�X∗‖2 ≤ 1 holds in the replicates may indicate a high chance of
the null hypothesis‖µ‖2 ≤ 1 being correct. This is also described in a transformed
variableY ∗ = √

n�X∗. For given observed valuey, we consider the parametric
bootstrap resampling

Y ∗ ∼ Np(y, τ2
1 Ip),(2.1)

and the bootstrap probability with scaleτ1 is denoted by

α̃1(y, τ1) = Pr{Y ∗ ∈ R;y, τ1},
where the index 1 indicates the “one-step” bootstrap in connection withα̃2 and
α̃3 defined later, as shown in Table 1.α̃1 is estimated by the frequency ofY ∗ ∈ R
from theB bootstrap replicates with the binomial varianceα̃1(1− α̃1)/B.

Let us consider a numerical example with

p = 4, n = 10, ‖x̄‖2 = 2.680.(2.2)

Although ‖x̄‖2 > 1, we are not sure if‖µ‖2 ≤ 1 holds or not. The frequentist
confidence level for the null hypothesis is given by the exactp-value, which

TABLE 1
Bootstrap probabilities and corrected p-values

Symbol Section Description

α̃1(y, τ1) 2 Bootstrap probability
α̂∞(y) 2 Exactp-value∗
α̂0(y) 2 Bootstrap probability (τ1 = 1)
α̂abc(y) 2 Two-level bootstrap correctedp-value
α̂1(y) 3 Multiscale bootstrap correctedp-value
α̃2(y, τ1, τ2) 4 Two-step bootstrap probability
α̂2(y) 4 Two-step multiscale bootstrap correctedp-value
α̃3(y, τ1, τ2, τ3) 5 Three-step bootstrap probability
α̂3(y) 5 Three-step multiscalebootstrap correctedp-value

∗A third-order accuratep-value in Section 7.
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we will denote byα̂∞(y), or simply α̂∞ for brevity sake. In this numerical
example, the value of‖x̄‖2 is, in fact, chosen to makêα∞(y) = 0.05. α̂∞ may
be approximated by the bootstrap probability withτ1 = 1, denoted by

α̂0(y) = α̃1(y,1).

This turns out to bêα0(y) = 0.0085, showinĝα0 is not a very good approximation
to α̂∞. Here the problem is so simple thatα̂0(y), as well asα̂∞(y), can be
computed numerically from the noncentral chi-square distribution function. If the
bootstrap resampling withB = 10,000, say, is used for̂α0, the standard error
becomes 0.0009.

A modification of α̂0 is developed based on the geometric theory in Efron,
Halloran and Holmes (1996) and Efron and Tibshirani (1998) to improve the
accuracy of the approximation tôα∞. The idea is to computêα0(η̂(y)) by
generating the second-level replicates aroundη̂(y) for estimating the curvature
of the surface∂R. When the surface of∂R is flat, α̂0(η̂(y)) = 1

2. It becomes
smaller/larger than1

2 when the surface is curved toward/away fromR. Let z

denote a generic symbol for thez-value corresponding to ap-valueα with relation
z = −�−1(α), where�−1(·) is the inverse of the standard normal distribution
function �(·). For example, we may writêz0(y) = −�−1(α̂0(y)). The ABC
conversion formula of Efron (1987) and DiCiccio and Efron (1992) is

ẑabc(y) = ẑ0(y) − ẑ0(η̂(y))

1− â(ẑ0(y) − ẑ0(η̂(y))
− ẑ0(η̂(y)),(2.3)

where ẑabc(y), ẑ0(y), and ẑ0(η̂(y)) are denoted̂Z, Z̃, and ẑ0, respectively, in
the notation of equation (6.6) of Efron and Tibshirani (1998). The corrected
p-value for the two-level bootstrap is then defined byα̂abc(y) = �(−ẑabc(y)).
The acceleration constant â, characterizing the probabilistic model, is known to
be â = 0 for the normal model.̂a may also be estimated using the second-level
bootstrap for (1.3); for details we refer to Efron, Halloran and Holmes (1996).
Note that the sign in front of̂a in (2.3) is reversed from that of equation (6.6) of
Efron and Tibshirani (1998), because the�ηp-axis is taking the opposite direction
here.

Thep-values for the numerical example of (2.2) are

α̂0(y) = 0.0085, α̂0(η̂(y)) = 0.315,

α̂abc(y) = 0.0775, α̂∞(y) = 0.05.

We observe that̂αabc shows great improvement overα̂0 to approximatêα∞. This
improvement is also confirmed in the asymptotic argument. It has been shown
in Efron and Tibshirani (1998) thatk = 1 for α̂0, and k = 2 for α̂abc under
(1.3) and (1.4).
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3. Multiscale bootstrap resampling. Here we continue to use the normal
model (1.1) for the argument of the correctedp-value in this section. The bootstrap
probability changes if the replicate sample size changes. When we altern1 = 10
to n1 = 3 for the numerical example of (2.2), or equivalently alter the scaleτ1 = 1
to τ1 = √

10/3, we observe that̂α1(y,1) = 0.0085 changes tôα1(y,
√

10/3) =
0.0359. In the multiscale bootstrap,α̂1(y, τ1) is computed for several values of
τ1 = √

n/n1. For example, instead ofn = 10, we use the following fiven1 values:

n1 = 3,6,10,15,21,(3.1)

and compute the corresponding bootstrap probabilities

α̃1(y, τ1) = 0.0359,0.0205,0.0085,0.0028,0.0008.(3.2)

These values, as well as those for other parameter settings, are shown in Figure 2
by plotting thez-value along the inverse of the scale. The horizontal axis is
1/τ1 = √

n1/n = 0.55,0.78,1,1.23,1.45, and the vertical axis is̃z1(y, τ1) =
−�−1(α̃1(y, τ1)) = 1.80,2.04,2.39,2.77,3.17.

Figure 2 shows these values along with a regression fit. This is obtained by
fitting a regression model with explanatory variables 1/τ1 andτ1,

z̃1(y, τ1) ≈ v̂/τ1 + ĉτ1,(3.3)

to the plot, wherêv andĉ are the regression coefficients estimated as

v̂ = 2.002, ĉ = 0.385(3.4)

for the plot of (3.2). We observe that the regression fit agrees with the plots very

FIG. 2. Plots of the z-value of the multiscale bootstrap probability along the inverse of the scale τ

for the normal example (p = 4) of Section 2 and the exponential example (p = 1) of Section 4.
Parameter values are chosen so that the exact p-value is either 0.05 (left panel)or 0.95 (right panel).
The curves are drawn by the regression model of equation (3.3).



2624 H. SHIMODAIRA

well for the cases in Figure 2. The regression model (3.3) has been justified in
Shimodaira (2002) under (1.1) and (1.4); we will use “≈” to indicate that equality
holds up toO(n−1) terms with the error of orderO(n−3/2). The regression model
with explanatory variables 1/τ1 andτ1 will be justified later, in fact, under (1.3)
and (1.4) as seen in (7.15), although the following interpretation of the coefficients
should be modified accordingly.

A simple geometric interpretation can be given to the regression coefficients
under (1.1) and (1.4). Efron and Tibshirani (1998) have shown a formula equivalent
to

ẑ0(y) ≈ v̂ + ĉ,(3.5)

wherev̂ andĉ correspond tox0 andd̂1−x0d̂2, respectively, in their equation (2.19).
v̂ is the signed distance of Efron (1985), defined as the distance fromy to
∂R with a positive/negative sign wheny is outside/inside ofR. Thus, v̂ =
±‖y − η̂(y)‖ measures evidence of the null hypothesis being wrong.ĉ is related
to the (p − 1) × (p − 1) matrix d̂ab measuring the curvature of∂R at η̂(y);
d̂ab is defined asdab in (1.4) by making the local coordinates orthonormal at
η̂(y). In our notation,ĉ = d̂1 − v̂d̂2, where d̂1 = d̂aa is the trace ofd̂ab, and
d̂2 = (d̂ab)2 = ∑p−1

a=1
∑p−1

b=1(d̂ab)2 is that for the squared matrix. When∂R is flat at
η̂(y), d̂ab = 0 and, thus,̂c = 0. v̂, d̂1 andd̂2 are transformation-invariant functions
of y calculated from the shape of the boundary and the density function ofY ; they
are referred to as geometric quantities here. Under (1.1) and (1.2) these quantities
are

v̂ = ‖y‖ − √
n, d̂1 = p − 1

2
√

n
, d̂2 = p − 1

4n
.(3.6)

This computes directly,

v̂ = 2.015, ĉ = 0.323(3.7)

for (2.2), showing good agreement with those computed indirectly from the
multiscale bootstrap.̂v andĉ in (3.4) are actually estimating those in (3.7), thus, it
would be appropriate to denote the former asˆ̂v and ˆ̂c, although we do not make the
notational distinction. This estimation is third-order accurate, since the regression
model (3.3) holds for (3.7) with error ofO(n−3/2).

Considering that̂v andĉ are functions ofy, we may define a statistic

ẑ1(y) = v̂ − ĉ.(3.8)

This is equivalent to the pivot statistic of Efron (1985), and Pr{ẑ1(Y ) ≤ x;η} ≈
�(x) for η ∈ ∂R under (1.1) and (1.4); see equation (2.16) of Efron and Tibshirani
(1998). Thus, a third-order accuratep-value is defined bŷα1(y) = �(−ẑ1(y)). We
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can computêα1(y) usingv̂ andĉ obtained from the multiscale bootstrap. For the
example of (2.2),

α̂1(y) = �(−2.002+ 0.385) = 0.0529,

showing an improvement over̂αabc(y) = 0.0775 to approximatêα∞(y) = 0.05.
The index ofα̂1 indicates the “one-step” bootstrap as similarly forα̃1.

It is interesting to note that we can also read off the values ofẑ1(y) from
Figure 2. The differentiation of (3.3) with respect to 1/τ1 is

∂z̃1(y, τ1)

∂(1/τ1)
≈ v̂ − ĉτ2

1 ,

and the slope of the regression curve at 1/τ1 = 1 gives ẑ1(y). The corrected
p-value α̂1 is essentially obtained from the change of the bootstrap probability
in the multiscale bootstrap.

4. Two-step multiscale bootstrap resampling. The one-step multiscale
bootstrap described in Section 3 calculates a very accuratep-value for the
arbitrarily-shaped region if there exists a transformation from the dataset to the
normal model. However, it can be inaccurate if such a transformation does not
exist even approximately. This restriction essentially comes from the fact that the
covariance matrix ofy in (1.1) is constant with respect toη. The acceleration
constantâ of the ABC formula measures the rate of change in the covariance
matrix, andâ is assumed zero in the derivation of (3.8). Here we introduce the
two-step multiscale bootstrap for estimatingâ to improve the accuracy of the one-
step multiscale bootstrap.

A breakdown of the one-step multiscale bootstrap method is illustrated in the
following example. LetX1, . . . ,Xn be one-dimensional independent exponential
random variables with meanµ,

X1, . . . ,Xn ∼ exp(−x/µ − logµ),

and let the null hypothesis of interest beµ ≤ 1. The exactp-value is calculated
by knowing that a transformed variableY = √

n�X is distributed as Gamma with
shapen and meanη = √

nµ. We consider a numerical example with

p = 1, n = 10, x̄ = 1.571,(4.1)

so thatα̂∞(y) = 0.05. The multiscale bootstrap probabilities for the fiven1 values
in (3.1) are computed as

α̃1(y, τ1) = 0.2990,0.1875,0.1115,0.0622,0.0322,(4.2)

and the regression coefficients of (3.3) are estimated asv̂ = 1.328, ĉ = −0.110.
Then the correctedp-value is computed as

α̂1(y) = �(−1.328− 0.110) = 0.0753.(4.3)
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Although this is an improvement overα̂0(y) = 0.112, it is not as good as in the
normal example above. The pivot (3.8) is not justified under (1.3) in general, and
α̂1(y) is, in fact, only first-order accurate for the exponential example.

The two-step multiscale bootstrap is employed simply to generate a second-step
replicate from every first-step replicate. Let us denote the conditional density of the
first-step bootstrap replicateY ∗ = √

n�X∗ as

Y ∗ ∼ f (y∗;y, τ1),(4.4)

given meany = √
n�X and scaleτ1 under (1.3), which reduces tof (y∗;y,1) =

f (y∗;y) whenτ1 = √
n/n1 is unity. This becomes (2.1) for (1.1), and Gamma

with shapen1 and meany for the exponential example. We generate a second-step
replicateY ∗∗ for eachy∗. The conditional density ofY ∗∗ giveny∗ takes the same
form as (4.4), but with scale parameterτ2 = √

n/n2;

Y ∗∗ ∼ f (y∗∗;y∗, τ2).(4.5)

For the normal example, (4.5) is equivalent to generating

X∗∗
1 , . . . ,X∗∗

n2
∼ Np(x̄∗, Ip)

for given x̄∗, and using the transformed variableY ∗∗ = √
n�X∗∗. The two-step

bootstrap probability with a pair of scales(τ1, τ2) is then defined by

α̃2(y, τ1, τ2) = Pr{Y ∗∗ ∈ R;y, τ1, τ2}
=

∫
α̃1(y

∗, τ2)f (y∗;y, τ1) dy∗,

where the integration is taken over the range of the components. We can write
α̃1(y, τ1) = α̃2(y, τ1,0), because the conditional density ofY ∗∗ converges to the
point mass aty∗ by taking the limitτ2 → 0. The two-step bootstrap might look
similar to the double bootstrap of Hall (1992), but they are very different. We
should generate thousands ofY ∗∗ for given y∗ in the double bootstrap, but only
oneY ∗ in the two-step bootstrap.

Let us consider twon2 values,

n2 = 6,15,(4.6)

for the normal example with parameter values (2.2). The two-step bootstrap
probabilities are, for example,

α̃2
(
y,

√
10
6 ,

√
10
6

) = 0.0359, α̃2
(
y,

√
10
10,

√
10
15

) = 0.0205.

Of course, they givẽα1(y,
√

10
3 ) andα̃1(y,

√
10
6 ), respectively, in (3.2), because

α̃2(y, τ1, τ2) = α̃1
(
y,

√
τ2

1 + τ2
2

)
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for (1.1). For the exponential example with parameter values (4.1), however,

α̃2
(
y,

√
10
6 ,

√
10
6

) = 0.3063, α̃2
(
y,

√
10
10,

√
10
15

) = 0.1866

are different, though very slightly, from̃α1(y,
√

10
3 ) = 0.2990 andα̃1(y,

√
10
6 ) =

0.1875, respectively, in (4.2). The difference ofα̃2(y, τ1, τ2) from α̃1(y,
√

τ2
1 + τ2

2 )

for (1.3) is explained by

z̃2(y, τ1, τ2) − z̃1
(
y,

√
τ2

1 + τ2
2

) .= âτ2
1τ2

2 (v̂2 − (τ2
1 + τ2

2 ))

(τ2
1 + τ2

2 )5/2
.(4.7)

We will use “
.=” to indicate that equality holds up toO(n−1/2) terms with error of

orderO(n−1). Formula (4.7) and a revised regression model

z̃1(y, τ1)
.= v̂ − 2âv̂2

τ1
+ (d̂1 − â)τ1(4.8)

for (1.3) are consequences of a more general argument with third-order accuracy
shown in Section 7.

The key idea in the two-step multiscale bootstrap is to estimateâ by looking at

the difference of̃α2(y, τ1, τ2) from α̃1(y,
√

τ2
1 + τ2

2 ). Once we computẽα1(y, τ1)

and α̃2(y, τ1, τ2) for several values of(τ1, τ2) by the one-step and two-step
multiscale bootstrap, we can estimatev̂, d̂1 andâ by fitting (4.7) and (4.8) to the
observed bootstrap probabilities. A second-order accuratep-value, denoted̂α2(y),
is then computed by using the estimated geometric quantities in thez-value

ẑ2(y)
.= v̂ − d̂1 + â(1− v̂2).(4.9)

This expression is shown to be equivalent to (2.3) up toO(n−1/2) terms by using
(4.8); ẑ0(y)

.= v̂ + d̂1 − â(1+ 2v̂2) andẑ0(η̂(y))
.= d̂1 − â. In the next section we

will describe a procedure based on the above idea, as well as its refined version
with third-order accuracy.

It follows from (4.8) that the one-step multiscale bootstrap estimatesv̂ − 2âv̂2

and d̂1 − â for the coefficientŝv and ĉ, respectively, under (1.3). Thus,ẑ1(y)
.=

v̂ − d̂1 + â(1− 2v̂2)
.= ẑ2(y) − âv̂2, as well aŝz0(y)

.= ẑ2(y) + 2d̂1 − 2â − âv̂2, is
first-order accurate in general. Since the differenceẑ2(y) − ẑ1(y)

.= âv̂2 does not
involve d̂1, the one-step method adjusts the bias resulting from the curvature even
if the normal model is misspecified.

5. Three-step multiscale bootstrap resampling. We may repeat “stepping”
to obtain multistep-multiscale bootstrap probabilities so that we might be able to
compute higher-order accuratep-values. This is the case, in fact, for going one step
further, although the results are not known for yet further stepping. We introduce
the three-step multiscale bootstrap for computing a third-order accuratep-value,
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denotedα̂3(y), under (1.3) and (1.4). In the following argument, we first describe
the procedure to computêα2(y), which helps understand that forα̂3(y).

The expression for̂z2(y, τ1, τ2) is obtained from (4.7) by substituting
√

τ2
1 + τ2

2
for τ1 in (4.8). This is also expressed as

z̃2(y, τ1, τ2)
.= ζ2(γ̂1, γ̂2, γ̂3, τ1, τ2),(5.1)

where the functionζ2 on the right-hand side is defined by

ζ2(γ1, γ2, γ3, τ1, τ2) = s1γ1(1+ s2γ3) − γ2 + s2γ3

s1γ1
.(5.2)

Heres1 = (τ2
1 + τ2

2 )−1/2 ands2 = τ2
1τ2

2s4
1 are functions of the scales, and theγ̂i ’s

are specified as functions ofy under (1.3) and (1.4);

γ̂1
.= v̂ − 2âv̂2, γ̂2

.= v̂(â − d̂1), γ̂3
.= v̂â.(5.3)

Theseγ̂i ’s are also used to express

ẑ2(y) = γ̂1(1+ γ̂3) + γ̂2

γ̂1
,(5.4)

which is equivalent to (4.9) up toO(n−1/2) terms. We calculatẽα2(y, τ1, τ2)

for several values of(τ1, τ2) by the two-step multiscale bootstrap resampling,
and fitting the observed̃z2(y, τ1, τ2) = −�−1(α̃2(y, τ1, τ2)) to the nonlinear
regression model (5.1). Then the estimatedγ̂i ’s are used to computêα2(y) =
�(−ẑ2(y)) from (5.4).

This procedure is generalized for the three-step multiscale bootstrap resampling.
A third-step replicateY ∗∗∗ is generated for eachy∗∗ by

Y ∗∗∗ ∼ f (y∗∗∗;y∗∗, τ3)

using the scaleτ3, and the three-step bootstrap probability is defined by

α̃3(y, τ1, τ2, τ3) = Pr{Y ∗∗∗ ∈ R;y, τ1, τ2, τ3}
=

∫
α̃2(y

∗, τ2, τ3)f (y∗;y, τ1) dy∗.

Then, observed̃z3(y, τ1, τ2, τ3) = −�−1(α̃3(y, τ1, τ2, τ3)) for several values of
(τ1, τ2, τ3) are fitted to the nonlinear regression modelζ3, defined by

ζ3(γ1, γ2, γ3, γ4, γ5, γ6, τ1, τ2, τ3)

= γ1s1(1+ γ3s2 + 4γ 2
3 s2

2 + γ5s3 + γ6s4)(5.5)

− (γ1s1)
−1(γ2 + γ3s2 + 7γ 2

3 s2
2 + γ4s2 + 3γ5s3 + 3γ6s4),

wheres1, . . . , s4 are given by

s1 = (τ2
1 + τ2

2 + τ2
3 )−1/2, s2 = (τ2

1τ2
2 + τ2

2τ2
3 + τ2

3τ2
1 )s4

1,

s3 = (
τ2

1τ2
2τ2

3 + τ4
2τ2

3 + τ4
1 (τ2

2 + τ2
3 )

)
s6
1, s4 = (τ2

1τ2
2τ2

3 )s6
1.
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The least squares estimates for the sixγi ’s are denoted bŷγ1, . . . , γ̂6. We then
computeα̂3(y) = �(−ẑ3(y)) by using the estimated̂γi ’s in

ẑ3(y) = γ̂1(1+ γ̂3 + 4γ̂ 2
3 + γ̂6) + γ̂ −1

1 (γ̂2 + γ̂ 2
3 /2+ γ̂4 + γ̂5).(5.6)

Section 7 is mostly devoted to proving the third-order accuracy ofα̂3(y). The
justification for the second-order accuracy ofα̂2(y) then immediately follows by
ignoringO(n−1) terms. As seen in (5.3),̂γ1 is O(1), andγ̂2 andγ̂3 areO(n−1/2).
The rest of the threeO(n−1) geometric quantities are defined in Section 7.8. We do
not have to know, however, the expressions ofγ̂i ’s for computingα̂3(y), because
their values are estimated from the nonlinear regression, and the estimation error
is onlyO(n−3/2).

It should be noted that there are other asymptotically equivalent expressions
for ζ3 and ẑ3 as functions of coefficients transformed from the sixγ̂i ’s; we have
shown the two different expressions forζ2 andẑ2 as functions of either̂γ1, γ̂2, γ̂3
or v̂, d̂1, â. The expressions (5.5) and (5.6) are obtained by seeking simple ones.

6. Examples. The two procedures in the previous section are applied to the
exponential example with parameter values (4.1). By the two-step multiscale
bootstrap, the least squares estimates ofγ̂i ’s are

γ̂1 = 1.328, γ̂2 = 0.144, γ̂3 = 0.137,

and the correctedp-value is computed as

α̂2(y) = 1− �
{
1.328(1+ 0.137) + 0.144

1.328

} = 0.0528,

which comes closer to the exactp-value α̂∞(y) = 0.05 than α̂1(y) = 0.0753
computed in (4.3). By the three-step multiscale bootstrap, the least squares
estimates of thêγi ’s are

γ̂1 = 1.328, γ̂2 = 0.145, γ̂3 = 0.127,

γ̂4 = −0.018, γ̂5 = −0.0004, γ̂6 = −0.036,

and the correctedp-value is

α̂3(y) = 1− �

{
1.328(1+ 0.127+ 0.065− 0.036)

+ 0.145+ 0.008− 0.018− 0.0004

1.328

}
= 0.0509,

which is even better than̂α2(y) = 0.0528.
In Table 2p-values are computed for several parameter settings. The bootstrap

probabilities are computed numerically (B = ∞), but the standard errors due to the
bootstrap resampling are shown forB = 10,000. The first row corresponds to the
normal model with (2.2), and the fourth row corresponds to the exponential model
with (4.1). The following two rows for each are obtained by changingn = 10 to
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TABLE 2
p-values in percent (standard error) for the examples∗

Ridge regression

n α̂0 α̂abc α̂1 α̂2 α̂3 α̂2 α̂3

Normal distribution (̂α∞ = 5.00)
10 0.85 7.75 5.29 (0.61) 5.85 (1.81) 7.03 (8.04) 5.67 (1.03) 6.04 (1.13)

100 2.73 5.25 5.01 (0.37) 5.05 (1.16) 5.08 (2.93) 5.04 (0.78) 5.06 (0.97)
1000 4.12 5.03 5.00 (0.32) 5.00 (1.05) 5.00 (2.22) 5.00 (0.72) 5.00 (0.89)

Exponential distribution (̂α∞ = 5.00)
10 11.15 5.00 7.53 (0.31) 5.28 (0.77) 5.09 (0.95) 5.77 (0.60) 5.13 (0.68)

100 6.73 5.00 5.90 (0.30) 5.03 (0.94) 5.01 (1.50) 5.25 (0.67) 5.04 (0.81)
1000 5.52 5.00 5.29 (0.30) 5.00 (0.98) 5.00 (1.82) 5.08 (0.69) 5.01 (0.80)

Normal distribution (̂α∞ = 95.00)
10 67.84 92.33 95.26 (0.18) 95.20 (0.41) 95.02 (0.51) 95.21 (0.34) 95.07 (0.37)

100 90.65 94.74 95.02 (0.24) 95.07 (0.84) 95.09 (1.28) 95.06 (0.60) 95.07 (0.70)
1000 93.91 94.97 95.00 (0.28) 95.00 (0.95) 95.00 (1.72) 95.00 (0.67) 95.00 (0.81)

Exponential distribution (̂α∞ = 95.00)
10 98.78 95.00 97.99 (0.24) 94.48 (1.31) 96.12 (7.39) 95.60 (0.81) 96.48 (0.56)

100 96.49 95.00 95.95 (0.28) 94.97 (1.06) 95.01 (2.71) 95.24 (0.72) 95.14 (0.82)
1000 95.50 95.00 95.30 (0.29) 95.00 (1.02) 95.00 (2.19) 95.08 (0.70) 95.02 (0.81)

∗The bootstrap calculation is replaced by integration numerically, and, hence, the number of
bootstrap replicates is regarded asB = ∞. The standard errors in parentheses are calculated for
the case ofB = 104 by the local linearization of the nonlinear regression [Draper and Smith (1998)].
All the combinations ofτ2

1 ∈ {10
3 , 10

6 , 10
10, 10

15, 10
21}, τ2

2 ∈ {10
6 , 10

15}, τ2
3 ∈ {10

6 , 10
15} are used for the

scales. The total numbers of bootstrap replicates are 5B, 15B and 35B, respectively, forα̂1, α̂2
andα̂3. For the ridge regression, the penalty weights areω1 = ω2 = 0 andω3 = · · · = ω6 = 0.01.

100 and 1000. Similarly, the last six rows are obtained by changingα̂∞ = 0.05 to
0.95. We observe that all thep-values tend to converge tôα∞ asn grows, and the
correctedp-values are faster for convergence thanα̂0.

α̃3(y, τ1, τ2, τ3) is computed for all the combinations of(τ1, τ2, τ3) values,
as noted in the table; five(τ1,0,0)’s, ten (τ1, τ2,0)’s, and twenty(τ1, τ2, τ3)’s.
Therefore, the numbers of bootstrap probabilities are 5, 15 and 35, respectively,
for α̂1(y), α̂2(y) and α̂3(y). The nonlinear regression models are fitted to these
bootstrap probabilities, and the least squares estimates of the geometric quantities
are calculated; each residual term is weighted inversely proportional to the
estimated variance. For stable estimation, ridge regression is also used; a penalty
term

∑6
i=1 ωiγ̂

2
i with smallωi values is added to the residual sum of squares for

minimization.
For the exponential distribution,̂αk is kth order accurate(k = 1,2,3), and,

in fact, |α̂k − α̂∞| becomes smaller ask increases in the table. It turns out that
|α̂abc− α̂∞| is almost zero here, becauseα̂abc happens to be third-order accurate
for the one-dimensional exponential distribution, as shown in Section 7.7.
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For the normal distribution,̂α1, α̂2 andα̂3 are third-order accurate, becauseγ̂3 =
· · · = γ̂6 = 0 under (1.1), as shown in Section 7.8. This may explain why|α̂k − α̂∞|
becomes larger ask increases in some of the rows. These four geometric quantities
of zero value are estimated from slight differences of bootstrap probabilities,
leading to unstable estimation as seen in the large standard errors. This is alleviated
by ridge regression; even the worst case in the tableα̂3 = 6.04± 1.13 may be
allowed in practice. However, the total number of replicates is 350,000 forα̂3,
almost comparable to that of the double bootstrap for achieving the same degree
of the standard error.

Although α̂1 is first-order accurate for (1.3), it is reasonably accurate even for
the exponential model in the table. The total number of replicates is 50,000, yet the
standard error is considerably smaller than that ofα̂3. Similar observation holds
for the second-order accurateα̂2. The one-step, as well as two-step, multiscale
bootstrap may provide a compromise between the number of replicates and the
accuracy in practice.

7. Asymptotic analysis of the bootstrap methods.

7.1. A unified approach. Our approach to assessing the bootstrap methods is
not very elegant but rather elementary and brute-force. We explicitly specify a
curved coordinate system along∂R, which is convenient to work on the bootstrap
methods. The density function ofY with respect to the curved coordinates is first
defined forτ = 1 in Section 7.2 and extended forτ > 0 in Section 7.3. We define
a modified signed distance by altering v̂ slightly, and its distribution function is
given in Section 7.4.

It turns out that thez-values of the bootstrap probabilities are special cases of
the modified signed distance, and our approach gives an asymptotic analysis of
the bootstrap methods in a systematic way. Using the result of Section 7.4, a third-
order accurate pivot statistic is defined in Section 7.5, and the distribution functions
of the bootstrapz-values are shown in Sections 7.6 to 7.8, proving the main results
of Section 5.

The proofs of lemmas are given in Shimodaira (2004). We have used
the computer softwareMathematica for straightforward and tedious symbolic
calculations; the program file is available from the author upon request.

7.2. Tube-coordinates. In our curved coordinate system, a pointη is specified
by two parts, a point on∂R and the signed distance from it. This is an instance
of the coordinate system used for the Weyl tube formula, and we call it tube-
coordinates. Below we will define the coordinate system explicitly, and show the
expression of the density function ofY in terms of the tube-coordinates. We take
an approach similar to that of Kuriki and Takemura (2000).

The density function of the exponential family of distributions is expressed as

exp
(
θiyi − ψ(θ) − h(y)

)
,(7.1)
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whereθ = (θ1, . . . , θp) is the natural parameter vector. We denote (7.1) byf (y;η)

using the expectation parameter vectorη = (η1, . . . , ηp) = E(Y ), the expected
value ofY . The change of variablesθ ↔ η is one-to-one, and is given byηi =
∂ψ/∂θi , θi = ∂φ/∂ηi , i = 1, . . . , p, where the potential functionφ(η) is defined
from the cumulant functionψ(θ) by φ(η) = maxθ {θiηi − ψ(θ)}. The metric atη
is denoted as

φij (η) = ∂2φ(η)

∂ηi ∂ηj

,

and the derivatives ofφ atη = 0 are denoted as

φi = ∂φ(η)

∂ηi

∣∣∣∣
0
, φij = ∂2φ(η)

∂ηi ∂ηj

∣∣∣∣
0
, φijk = ∂3φ(η)

∂ηi ∂ηj ∂ηk

∣∣∣∣
0
, and so on.

Since the exponential family is not uniquely expressed up to affine transformation,
we assume without loss of generality thatφi = 0 andφij = δij , whereδij takes
value one wheni = j , otherwise zero. In other words,E(Y ) = 0 and cov(Y ), the
covariance matrix ofY , is Ip at θ = 0. We make our asymptotic argument local in
a neighborhood ofη = 0 by assuming the local alternatives.

The smooth surface∂R of the regionR is specified locally aroundη = 0 by

ηa(u) = ua, a = 1, . . . , p − 1; ηp(u) ≈ −dabuaub − eabcuaubuc,

whereu = (u1, . . . , up−1) is the(p − 1)-dimensional parameter vector to specify
a point η(u) on ∂R. R is specified locally byηp ≤ ηp(u). It follows from
the argument below equation (2.12) of Efron and Tibshirani (1998) thatdab =
O(n−1/2) and eabc = O(n−1), and similarly, φijk = O(n−1/2) and φijkl =
O(n−1).

Let Ba
i (u) = ∂ηi/∂ua , i = 1, . . . , p, be the components of a tangent vector of

the surface fora = 1, . . . , p − 1. They are given explicitly as

Ba
b (u) = δab, b = 1, . . . , p − 1; Ba

p(u) ≈ −2dabub − 3eabcubuc,

and the metric in the tangent space is given by

φab(u) = φij (η(u))Ba
i (u)Bb

j (u)

≈ δab + φabcuc(7.2)

+ {
4dacdbd − 2dacφbdp − 2dbdφacp − dcdφabp + 1

2φabcd
}
ucud,

whereφij (η(u)) ≈ δij + φijaua + {−dabφijp + 1
2φabij }uaub. Let B

p
i (u), i = 1,

. . . , p, be the components of the unit length normal vector orthogonal to the
tangent vectors with respect to the metric such that

φij (η(u))Ba
i (u)B

p
j (u) = 0, a = 1, . . . , p − 1;

φij (η(u))B
p
i (u)B

p
j (u) = 1.
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The components are calculated explicitly asB
p
a (u) ≈ (2dab −φabp)ub +{3eabc +

dabφcpp + dbcφapp − 2dbdφacd + φabdφcdp + 1
2φabpφcpp − 1

2φabcp}ubuc, and
B

p
p(u) ≈ 1 − 1

2φappua + {−2dacdbc + 1
2dabφppp + 1

2φacpφbcp + 3
8φappφbpp −

1
4φabpp}uaub.

Let v be a scalar, and(u, v) be a p-dimensional vector. We consider
reparameterization defined by

ηi(u, v) = ηi(u) + B
p
i (u)v, i = 1, . . . , p,(7.3)

and assumeη ↔ (u, v) is one-to-one at least locally aroundη = 0. (u, v) gives
the tube-coordinates of the pointη. The boundary∂R is expressed simply by
v = 0, and the regionR is v ≤ 0. (u, v) is used for indicating the parameter
valueη = η(u, v), or the observationy = η(u, v). When there is a possibility of
confusion, we may writey ↔ (û, v̂) instead ofη ↔ (u, v).

Since the normal vector is orthogonal to the surface,η(u) = η(u,0) ∈ ∂R is
the projection ofη(u, v) onto ∂R; û is the maximum likelihood estimate under
the restricted model specified by∂R. η(û,0) is denoted bŷη(y) in Section 1 as a
function ofy. v̂ is the signed distance mentioned for (1.1) in Section 3.

v̂ is also related to the signed likelihood ratioR [McCullagh (1984) and Severini
(2000)] byR ≈ v̂ + 1

6φ̂pppv̂2 + { 1
24φ̂

pppp − 1
72(φ̂

ppp)2}v̂3, whereφ̂ppp andφ̂pppp

are the third and fourth derivatives to the normal direction evaluated atη(û,0),
instead ofη = 0. This third derivative is associated with the acceleration constant.
For the acceleration constantâ, the formulaâ = −1

6φ̂ppp is obtained directly from
equation (2.9) of DiCiccio and Efron (1992), or by using equation (6.7) of Efron
(1987) and∂3ψ/∂θi ∂θj ∂θk = −φijk . The expression for the density function of
(Û , V̂ ) is obtained fromf (y;η) by change of variables, as shown in the following
lemma.

LEMMA 1. Let Y ∼ f (y;η) be the exponential family of distributions with
η = E(Y ). Without loss of generality we may assume that cov(Y ) = Ip at η = 0
and that the true parameter value is specified by η = (0, . . . ,0, λ) for some λ, that
is, ηa = 0, a = 1, . . . , p − 1, ηp = λ, or, equivalently, u = 0, v = λ using the tube-
coordinates (u, v) ↔ η. Let f (û, v̂;λ) be the joint density function of (Û , V̂ ) ↔ Y .
Then, ignoring the error of O(n−3/2), we obtain

logf (û, v̂;λ) ≈ g(v̂, λ) + ga(v̂, λ)ûa + gab(v̂, λ)ûaûb
(7.4)

+ gabc(v̂, λ)ûaûbûc + gabcd(v̂, λ)ûaûbûcûd ,

where the five functions on the right-hand side are defined by g(v̂, λ) =
−1

2p log(2π)− 1
2(v̂ −λ)2 − 1

8φiijj + 1
6(φijk)2 − 1

3φpppλ3 − 1
8φppppλ4 +{2daa −

1
2φaap + 1

2φppp + 1
2φpppλ2 + 1

6φppppλ3}v̂ +{−2(dab)2 +2dabφabp − 3
4(φabp)2 −

1
2(φapp)2− 1

4(φppp)2+ 1
4φpppp + 1

4φaapp}v̂2− 1
6φpppv̂3− 1

24φ
ppppv̂4, ga(v̂, λ) =

1
2φabb + 1

2φappλ2 + 1
6φapppλ3 + {−1

2φappλ − dabφbcc + 5dabφbpp + φappdbb −
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2φabcdbc + 1
2φabpφbcc − 3

2φabpφbpp + 1
4φappφbbp − 3

4φappφppp + 1
2φabcφbcp −

1
2φabbp + 1

2φappp + 6eabb + dabφbppλ2 − 1
2φabpφbppλ2 − 1

4φappφpppλ2}v̂ +
{−dabφbpp + 1

2φabpφbpp + 1
4φappφppp − 1

6φappp}v̂3, gab(v̂, λ) = −1
2δab −dabλ−

1
2dabφccp + 1

4φabcc − 1
4φacdφbcd +2dacdbc −2dacφbcp − 1

2dabφpppλ2+{−dab +
1
2φabp − (2dacdbc − 1

2dabφppp + 1
4φabpp − 1

2φacpφbcp − 3
8φappφbpp)λ}v̂,

gabc(v̂, λ) = −1
6φabc − eabcλ + {−2eabc + 1

3φabcp − 3
2dabφcpp + dadφbcd −

1
2φabdφcdp − 1

4φabpφcpp}v̂, gabcd(v̂, λ) = −1
2dabdcd + 1

2φabpdcd − 1
24φ

abcd .

7.3. Changing the scale. We define a density functionf (y;η, τ ) with mean
η and scaleτ > 0 by modifyingf (y;η). Hereτ is regarded as a known constant,
whereasη is a unknown parameter vector. Letφ(η, τ ) be the potential function
of f (y;η, τ ), andφ(η) be that forf (y;η). Since the density function is defined
by specifying the potential function, the following equation gives a definition of
f (y;η, τ ):

φ(η, τ ) = φ(η)/τ2.(7.5)

This f (y;η, τ ) comes naturally from the multiscale bootstrap resampling. In
fact, the potential function of the replicateY ∗ is φ(η, τ ) = ‖η‖2/(2τ2) for the
normal example (2.1) of Section 2, and that isφ(η, τ ) = −n(1+ logη)/τ2 for the
exponential example of Section 4, and thus both agree with (7.5). The same applies
to the exponential family, in general, as shown below.

LEMMA 2. Let X be a p-dimensional random vector of the exponential
family. We assume that Y is expressed as a sum of m independent X’s such that
Y = √

n(X1 + · · · + Xm)/m for m > 0, and that the density function is f (y;η)

when m = n. Then Y ∼ f (y;η, τ ) with τ = √
n/m for τ > 0.

We continue to use the tube-coordinates defined by the reparameterization
η ↔ (u, v) of (7.3). By altering the potentialφ(η,1) to φ(η, τ ), the metric, as well
as the tube-coordinates, should have changed if we go back to the specification of
η(u) andBp(u) given in the previous section. However, we continue to use the
specification withτ = 1 for anyτ > 0, so that the reparameterizationη ↔ (u, v)

does not depend onτ .

LEMMA 3. Let f (û, v̂;λ) be the joint density function of (Û , V̂ ) ↔ Y given in
Lemma 1, and f (û, v̂;λ, τ ) be that corresponding to f (y;η, τ ) with scale τ > 0.
Then the expression of logf (û, v̂;λ, τ ) is obtained from (7.4) by changing (û, v̂)

to

ũ = û/τ, ṽ = v̂/τ,(7.6)
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by adding the logarithm of the Jacobian log(1/τp) to (7.4), and replacing φijk,
φijkl , dab, eabc and λ, respectively, with

φ̃ijk = τφijk, φ̃ijkl = τ2φijkl,
(7.7)

d̃ab = τdab, ẽabc = τ2eabc, λ̃ = λ/τ.

7.4. Modified signed distance. We consider yet another transformation of the
coordinates for expressing the bootstrapz-values in modified̂v values. Letw be a
scalar variable defined formally by the series

w = v +
∞∑

r=0

c̄rv
r + uc

∞∑
r=0

b̄c
r v

r ,(7.8)

wherevr denotes ther th power. The coefficients arēcr = O(n−1/2) and b̄c
r =

O(n−1), and their expressions are specified later. We assume the transformation
(u, v) ↔ (u,w) is one-to-one at least locally around(u, v) = 0. By inverting the
series in (7.8), we also have

v = w −
∞∑

r=0

crw
r − uc

∞∑
r=0

bc
rw

r,(7.9)

where cr = c̄r − ∑r
s=0(r − s + 1)c̄r−s+1c̄s , and bc

r = b̄c
r . The coefficients are

cr = O(n−1/2) andbc
r = O(n−1). Let Ŵ be the random variable corresponding to

w; the observed valuêw is defined by (7.8) but using the observed(û, v̂) instead
of (u, v).

We call ŵ a modified signed distance characterized by the coefficientsbc
r , cr ;

ŵ reduces tôv when all these coefficients are zero. Thez-values of the bootstrap
probabilities are represented asŵ by appropriately specifying the coefficients. The
following lemma plays a key role in studying the distributional properties of the
bootstrap probabilities.

LEMMA 4. Let us assume that the distribution of Y in the tube-coordinates is
specified by (Û , V̂ ) ∼ f (û, v̂;λ, τ ), and the coefficients in (7.9)are of order bc

r =
O(n−1) for r ≥ 0, c0 = O(n−1/2), c1 = O(n−1), c2 = O(n−1/2), c3 = O(n−1)

and cr = O(n−3/2) for r ≥ 4. We define zc(ŵ;λ, τ ) from the distribution function
of the modified signed distance Ŵ as

Pr{Ŵ ≤ ŵ} = �
(
zc(ŵ;λ, τ )

)
.

Then the zc-formula is, ignoring the error of O(n−3/2), expressed as

zc(ŵ;λ, τ ) ≈ τ−1g−(ŵ, λ) + τg+(ŵ, λ),(7.10)

where g−(ŵ, λ) = (ŵ − λ) − c0 − 1
3φpppλ2 + 1

6φpppλŵ + (1
6φppp − c2)ŵ

2 −
1
6c0φ

pppλ − {c1 + 1
3c0φ

ppp}ŵ + {1
8(φapp)2 + 1

18(φ
ppp)2 − 1

8φpppp}λ3 +
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{−1
8(φapp)2 + 1

24φ
pppp}λ2ŵ + {− 1

24(φ
ppp)2 + 1

24φ
pppp − 1

6c2φ
ppp}λŵ2 +

{− 1
72(φ

ppp)2 + 1
24φ

pppp − 1
3c2φ

ppp − c3}ŵ3, and g+(ŵ, λ) = −(daa + 1
6φppp) +

{(dab)2 − dabφabp + 1
6daaφppp + 1

2(φabp)2 + 1
2(φapp)2 + 13

72(φ
ppp)2 − 1

4φaapp −
1
8φpppp}ŵ+{(dab)2− 1

6daaφppp + 1
8(φapp)2+ 5

72(φ
ppp)2− 1

24φ
pppp}λ. Note that

the zc-formula does not involve the coefficients bc
r , and that the distribution func-

tion of Ŵ is characterized by the coefficients cr with third-order accuracy. The
index c of zc indicates the coefficients cr .

The true parameter value is assumed to be(0, λ) in the (u, v)-coordinates for
(7.4) and (7.10). If we alter the true parameter value to arbitrary(u, v) with u = 0,
the expression changes as well, and�−1(Pr{Ŵ ≤ ŵ}) is denoted aszc(ŵ;u, v, τ ),
which reduces tozc(ŵ;0, λ, τ ) = zc(ŵ;λ, τ ) whenu = 0 andv = λ.

zc(ŵ;u, v, τ ) is used for representing the bootstrap probabilities in particular.
The simple bootstrap probability is, for example,α̂0(y) = Pr{V̂ ∗ ≤ 0;y} =
�(zc(0; û, v̂,1)) with all cr = 0. The expression ofzc(ŵ

∗; û, v̂, τ ) is obtained
from (7.10) by changing the origin toη(û).

LEMMA 5. Let Y ∗ be a replicate of Y distributed conditionally as Y ∗ ∼
f (y∗;y, τ ) with mean y and scale τ , and Ŵ ∗ be the corresponding modified
signed distance. Let us denote the conditional distribution of Ŵ ∗ given y as
Pr{Ŵ ∗ ≤ ŵ∗;y} = �(zc(ŵ

∗; û, v̂, τ )). Then the expression of zc(ŵ
∗; û, v̂, τ )

is obtained from (7.10) by replacing ŵ, λ, φppp and d1 = daa, respectively,
with ŵ∗, v̂,

φ̂ppp ≈ φppp + {
3φbpp(2dbc − φbcp) − 3

2φcppφppp + φcppp
}
ûc and(7.11)

d̂1 ≈ daa + {1
2daaφcpp − dabφabc + 3eaac

}
ûc.(7.12)

Note that O(n−1) terms change only O(n−3/2). For example, d2 = (dab)2 would
be replaced with d̂2, but d̂2 ≈ d2.

7.5. Pivot statistic. Although the exactly unbiasedp-value may not exist in
general, a third-order accuratep-value can be derived under (1.3) and (1.4). Let
Y ∗ ∼ f (y∗; η̂(y),1) be a replicate generated with meanη̂(y) instead ofy, and
α̂∞(y) be defined as the probability of the corresponding signed distanceV̂ ∗ being
greater than or equal to the observed valuev̂;

α̂∞(y) = Pr{V̂ ∗ ≥ v̂; η̂(y)}.
This is the exactp-value for the normal example of Section 2 and for the
exponential example of Section 4. We will show thatα̂∞(y) is, in fact, third-order
accurate under (1.3) and (1.4).
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First, ẑ∞(y) = −�−1(α̂∞(y)) is expressed by thezc-formula of Lemma 5.
From the definition,̂z∞(y) = zc(v̂; û,0,1) with all cr = 0 and, thus,

ẑ∞(y) ≈ v̂ − (
d̂1 + 1

6φ̂ppp) + 1
6φ̂pppv̂2

+ {
(dab)2 − dabφabp + 1

6daaφppp

(7.13)
+ 1

2(φabp)2 + 1
2(φapp)2 + 13

72(φ
ppp)2 − 1

4φaapp − 1
8φpppp

}
v̂

+ {− 1
72(φ

ppp)2 + 1
24φ

pppp}
v̂3.

By comparing (7.13) with (7.8), we find thatẑ∞(y) can be expressed aŝw with
coefficients̄c0 = −daa − 1

6φppp, c̄1 = (dab)2−dabφabp + 1
6daaφppp + 1

2(φabp)2+
1
2(φapp)2 + 13

72(φ
ppp)2 − 1

4φaapp − 1
8φpppp, c̄2 = 1

6φppp, c̄3 = − 1
72(φ

ppp)2 +
1
24φ

pppp, b̄c
0 = −1

2daaφcpp + dabφabc − 3eaac and b̄c
2 = 1

2φbpp(2dbc − φbcp) −
1
4φcppφppp + 1

6φcppp. Then the distribution function of̂z∞(y) is obtained
immediately from Lemma 4 as shown below.

LEMMA 6. Let us consider a statistic

ẑq(y) ≈ ẑ∞(y) + q0 + q1v̂ + q2v̂
2 + q3v̂

3 + ûcg
c(v̂),

where the coefficients are q0 = O(n−1/2), q1 = O(n−1), q2 = O(n−1/2) and
q3 = O(n−1), and gc(v̂) = O(n−1), c = 1, . . . , p − 1, representing arbitrary
polynomials of v̂. The index q of zq indicates the coefficients. Assuming (Û , V̂ ) ∼
f (û, v̂;λ,1), the distribution function of ẑq (y) is expressed as

Pr{ẑq(Y ) ≤ x;λ}
≈ �

[
x − λ − q0 − 1

3φpppλ2 + 1
6φpppλx − q2x

2

+ {
(dab)2 + 1

8(φapp)2 + 7
72(φ

ppp)2 − 1
24φ

pppp − 1
6φpppq0

}
λ

(7.14)
+ {−q1 − 2q2(d

aa + 1
6φppp − q0)

}
x + {−1

8(φapp)2 + 1
24φ

pppp
}
λ2x

+ {1
3φpppq2 + 2q2

2 − q3
}
x3 + {1

8(φapp)2 + 1
18(φ

ppp)2 − 1
8φpppp

}
λ3

+ {− 5
72(φ

ppp)2 + 1
24φ

pppp − 1
6φpppq2

}
λx2].

For λ = 0, the distribution function is Pr{ẑq(Y ) ≤ x;0} ≈ �[x − q0 − q2x
2 +

{−q1 − 2q2(d
aa + 1

6φppp − q0)}x + {1
3φpppq2 + 2q2

2 − q3}x3]. In particular,
Pr{ẑ∞(Y ) ≤ x;0} ≈ �(x) and, thus,̂z∞(y) is a third-order accurate pivot statistic.
We obtain Pr{α̂∞(Y ) < α;η} ≈ α for η ∈ ∂R, proving the third-order accuracy
of α̂∞(y).

The reverse of the above statement also holds.α̂q(y) = �(−ẑq(y)) is a third-
order accuratep-value if and only ifq0 ≈ q1 ≈ q2 ≈ q3 ≈ 0. If we confine our
attention toα̂q(y) defined only fromv̂ and the geometric quantitiesdab, eabc, φij ,
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φijk andφijkl evaluated at̂η(y), thenûcg
c(v̂) in ẑq (y) comes only fromqr ’s by the

replacements shown in Lemma 5. Thus,α̂q(y) is a third-order accuratep-value if
and only if α̂q(y) ≈ α̂∞(y). Similarly, α̂q(y) is second-order accurate if and only
if q0

.= q2
.= 0 and, thus,̂αq(y)

.= α̂∞(y).
ẑ∞(y) is equivalent to other pivots in the literature up toO(n−1) terms. Under

(1.1) and (1.4),φijk = φijkl = 0 and, thus, (7.13) reduces toẑ∞(y) ≈ v̂− d̂1+ d̂2v̂,
giving (3.8), the pivot of of Efron (1985). Under (1.3), the modified signed
likelihood ratio [Barndorff-Nielsen (1986) and Barndorff-Nielsen and Cox (1994)]
has been known as a third-order accurate pivot, and it is expressed asR∗ = R +
(1/R) log(U/R) in the notation of Severini [(2000), page 251], whereU is defined
using the log-likelihood derivatives. A straightforward calculation shows that
U ≈ v̂ − d̂1v̂

2+{1
2(daa)2+dabdab − 1

4φaapp −dabφabp + 1
2(φabp)2+ 1

2(φapp)2+
1
8(φppp)2 − 1

12φ
pppp}v̂3, and thatR∗ ≈ ẑ∞(y) in the moderate deviation region.

7.6. Accuracy of the bootstrap probability. Since the eventY ∗ ∈ R is
equivalent to the event̂V ∗ ≤ 0, thez-value of the bootstrap probability with scale
τ is expressed by thezc-formula of Lemma 5;̃z1(y, τ ) = −zc(0; û, v̂, τ ) with all
cr = 0. From (7.10), we obtain a refined version of (4.8), erring onlyO(n−3/2),

z̃1(y, τ ) ≈ τ−1[v̂ + 1
3φ̂pppv̂2 − {1

8(φapp)2 + 1
18(φ

ppp)2 − 1
8φpppp}

v̂3]
+ τ

[(
d̂1 + 1

6φ̂ppp)
(7.15)

− {
(dab)2 − 1

6daaφppp + 1
8(φapp)2 + 5

72(φ
ppp)2 − 1

24φ
pppp

}
v̂
]
.

It follows from (7.15) thatτ z̃1(y, τ ) is expressed aŝw and, thus,τ z̃1(y, τ ) ≈
ẑq (y) by choosing the coefficients appropriately. They arec0 = (daa + 1

6φppp)τ2,
c1 = (−(dab)2 − 1

2daaφppp − 1
8(φapp)2 − 13

72(φ
ppp)2 + 1

24φ
pppp)τ2, c2 = 1

3φppp,
and c3 = −1

8(φapp)2 − 5
18(φ

ppp)2 + 1
8φpppp for ŵ, or, equivalently,q0 = (1 +

τ2)(daa + 1
6φppp), q1 = −(1+τ2)(dab)2+dabφabp + 1

4φaapp − 1
2(φabp)2− 1

8(4+
τ2)(φapp)2 + 1

6(−1 + τ2)daaφppp − 1
72(13 + 5τ2)(φppp)2 + 1

24(3 + τ2)φpppp,
q2 = 1

6φppp, q3 = −1
8(φapp)2 − 1

24(φ
ppp)2 + 1

12φ
pppp for ẑq(y). The distribution

function ofτ z̃(y, τ ) is obtained from (7.10) or (7.14). In particular, the distribution
function of ẑ0(y) = z̃1(y,1) underλ = 0, τ = 1 is

Pr{ẑ0(Y ) ≤ x;0}
≈ �

[
x − (

2daa + 1
3φppp) − 1

6φpppx2

+ {
2(dab)2 − dabφabp + 1

3daaφppp + 1
2(φabp)2(7.16)

+ 5
8(φapp)2 + 11

36(φ
ppp)2 − 1

4φaapp − 1
6φpppp

}
x

+ {11
72(φ

ppp)2 + 1
8(φapp)2 − 1

12φ
pppp}

x3],
showing the first-order accuracy ofα̂0(y).
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Remark A of Efron and Tibshirani (1998) discusses a calibrated bootstrap
probability, denoted̂αdouble(y) here, using the double bootstrap of Hall (1992).
Similarly to the two-level bootstrap, thousands ofY ∗ are generated around
η̂(y). Then α̂0(y

∗) is computed for eachy∗. The expression of̂zdouble(y) =
�−1[Pr{ẑ0(Y

∗) ≤ ẑ0(y); η̂(y)}] is obtained from (7.16) by the replacements of
Lemma 5, and a straightforward calculation shows thatẑdouble(y) ≈ ẑ∞(y),
proving the third-order accuracy ofα̂double(y).

7.7. Accuracy of the two-level bootstrap. The expression of̂z0(y) is obtained
from (7.15) by lettingτ = 1, and ẑ0(η̂(y)) ≈ d̂1 + 1

6φ̂ppp is obtained from it

by letting v̂ = 0. By substituting these expressions, as well asâ = −1
6φ̂ppp for

those in (2.3), we find that̂zabc(y) is expressed aŝw, or, equivalently,ẑq (y)

with coefficientsq0 = q2 = 0, q1 = −2(dab)2 + 1
4φaapp + dabφabp − 1

2(φabp)2 −
5
8(φapp)2 − 1

4(φppp)2 + 1
6φpppp andq3 = −1

8(φapp)2 − 1
8(φppp)2 + 1

12φ
pppp. The

distribution function is then obtained from Lemma 6. Forλ = 0, it becomes

Pr{ẑabc(Y ) ≤ x;0} ≈ �(x − q1x − q3x
3),(7.17)

showing the second-order accuracy ofα̂abc(y).
For the exponential example of Section 4,p = 1, φ111= −2/

√
n, φ1111= 6/n

and all the other quantities inq1 and q3 are zero. Therefore,q1 = q3 = 0, and
ẑabc(y) turns out to be third-order accurate, explaining the high accuracy ofα̂abc(y)

observed in Table 2.

7.8. Accuracy of the multistep-multiscale bootstrap. Using the expressions
(7.4) and (7.15), the expression ofz̃2(y, τ1, τ2) is obtained by the integration

z̃2(y, τ1, τ2) = �−1
{∫

�
(
z̃1(y

∗, τ2)
)
f (y∗;y, τ1) dy∗

}
.(7.18)

By repeating the same integration usingz̃2(y
∗, τ2, τ3) instead ofz̃1(y

∗, τ2), we
obtain the expression ofz̃3(y, τ1, τ2, τ3) as given below.

LEMMA 7. Let us define the following six geometric quantities using the deriv-
atives evaluated at η = 0: γ1 = λ + 1

3λ2φppp + λ3{−1
8(φapp)2 − 1

18(φ
ppp)2 +

1
8φpppp}, γ2 = λ{−daa − 1

6φppp} + λ2{(dab)2 − 1
2daaφppp + 1

8(φapp)2 +
1
72(φ

ppp)2 − 1
24φ

pppp}, γ3 = −1
6λφppp + λ2{1

4(φapp)2 + 1
9(φppp)2 − 1

8φpppp},
γ4 = λ2{−dabφabp + 1

3daaφppp + 1
2(φabp)2 + 1

2(φapp)2 + 2
9(φppp)2 − 1

4φaapp −
1
6φpppp}, γ5 = λ2{−1

8(φapp)2 − 1
8(φppp)2 + 1

12φ
pppp} and γ6 = λ2{−1

8(φapp)2 −
1
8(φppp)2 + 1

24φ
pppp}. Those evaluated at η̂(y), denoted γ̂1, . . . , γ̂6, are obtained

by replacing λ, φppp and daa , respectively, with v̂, (7.11)and (7.12)as shown in
Lemma 5. Then we have

z̃3(y, τ1, τ2, τ3) ≈ ζ3(γ̂1, γ̂2, γ̂3, γ̂4, γ̂5, γ̂6, τ1, τ2, τ3)(7.19)
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using the ζ3-function of (5.5). Since (7.19)errs only O(n−3/2) for any values of
(τ1, τ2, τ3), the nonlinear regression for three-step multiscale bootstrap probabili-
ties in Section 5 estimates γ̂i ’s up to O(n−1) terms.

If we defineẑ3(y) of (5.6) using theγ̂i ’s defined above, we can easily verify

ẑ3(y) ≈ ẑ∞(y)(7.20)

by comparing (5.6) with (7.13). This proves the third-order accuracy ofα̂3(y)

under (1.3) and (1.4).
For the multivariate normal model of (1.1),φ(η) = ‖η‖2/2 and, thus,φijk =

φijkl = 0. This impliesγ3 = · · · = γ6 = 0, proving the third-order accuracy of
α̂1(y) andα̂2(y) under (1.1) and (1.4).
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