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1. Introduction
  In recent years, a large amount of gene ex-
pression data has been collected and estimating 
gene networks has become a central topic in the 
field of bioinformatics. Several methodologies 
have been proposed for constructing a gene net-

work based on gene expression data and the Gaussian graphical model approach is one of the 
most effective methods. When we look at this method from a Bayesian perspective, questions of 
the nature and consistency of prior probability specification (prior probabilities over graphical 
structures etc) have yet to be definitively determined, though a lot of ideas have been suggested 
[1,2].
 Recent studies of networks such as the Internet or the WWW have revealed that the probabil-
ity that a node has k edges or equivalently k adjacent nodes, follows a power law                   over a 
large range of k, with an exponent    that ranges between 1 and 3 depending on the system. Such 
networks are called scale-free and this property is suggested to be appropriate for gene networks 
as well [3].
 Many methods have been proposed on how to generate a scale-free network [3], and they can, 
roughly, be classified into two types of models. In the first, a static model, each node in the net-
work is assigned a weight. Edges are added to the network over time in such a manner that nodes 
with larger weights have a higher propensity to acquire edges. The second, a dynamic model, 
generates a scale-free network via the continuous addition of nodes to an existing network. 
As each node is added, edges connect it preferentially to the previous nodes in the net-
work that are already well connected.
 Previous attempts to confgure scale-free prior distributions over graphs focused 
on a static model  [4,5]. However, that model was chosen for its mathematical sim-
plicity alone; while recent evidence has shown that a dynamic model approach is 
relevant for describing gene networks [6].
 In this study, we propose a new scale-free prior 
based on a biologically relevan dynamic model. This 
method is applied to S. cerevisiae gene expres-
sion data.  

P(k) ∝ k−γ  
γ

2. Gaussian 
Graphical Models
 Graphical models provide representa-
tions of the conditional independence struc-
ture of a multivariate distribution as well as 
access to algorithms for the computation of con-
ditional and marginal densities. Multivariate 
Gaussian graphical models are defined in terms of 
Markov properties, i.e. conditional independencies associ-
ated with the underlying graph. Thus, model selection can be performed by testing 
these conditional independencies, which are equivalent to specified zeros among 
certain (partial) correlation coefficients. The graph G consists of a set of nodes V 
and a set of edges E. Two nodes     and     are conditionally independent given the re-
maining variables if, and only if,           . The details of Gaussian graphical models are 
described in [1].
 Formal inference is inherently structured by composition; from a Bayesian perspective, we are 
interested in the posterior distribution

For the first term P(Y|G), we refer to [1] and, in our study, we concentrate on the prior, P(G). 
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P(G | Y ) ∝ P(Y | G)P(G)  

3. A Dynamic Scale-free 
Network Model
 As mentioned above, recent work has established that a dynamic model approach, based on 
growth and preferential attachment, is relevant for describing the evolution of gene networks. In 
more detail, for the S. cerevisiae gene network it has been established that (i) there is correlation 
between the age of a gene and its connectivity, and (ii) the number of interactions a gene gains 
during its evolution is proportional to its connectivity (i.e. a linear preferential attachment 
scheme) [6].  
 The model employed here is a linear preferential attachment model and is a mild variant of 
the highly influential model of Barabasi and Albert [7]. The algorithm for generating a scale-free 
graph G starts by taking a single node, and at every time step a new node is added along with m 
edges that link the new node to m different nodes already present in the network. With    the con-
nectivity of node i, the probability the new node n will be connected to node i with edge      satis-
fies

where n is the number of nodes present in the network, and B is a parameter that is determined 
by specifying the other model parameter, a. The term in addition to the connectivity    is a conse-
quence of allowing the number of edges added with each new node to increase over time. This 
effect increases with the magnitude of a. The resulting network, at least asymptotically in the 
number of nodes, has power law exponent                                     . Unlike the model of Barabasi 
and Albert, which always yields a network with         , the above modification enables us to choose 
a power law exponent to match that observed in a gene network.     
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P(ein ) ∝ ki + Bna

γ = 2 + B(1 − a) (1− Ba)  
γ = 3  

ki

4. A New Biologically Motivated 
Scale-free Prior over Graphs  
 As discussed previously, it has been observed that many gene networks have a heavy-tailed 
degree sequence k (the number of edges per node) called a power law distribution                . And 
previous attempts to render a prior distribution based on this property have focused solely upon 
the static model introduced in [5]. We would like to construct a prior using the more biologically 
relevant dynamic model described in the Part 3. The algorithm to assign a prior probability to 
any given graph G with nodes                        is described now.
 Let                          be a permutation of              . Then each permutation               , when as-
signed to the nodes             , respectively, defines one possible ordering in which              were 
added sequentially to generate a network G under our model. The conditional probability              
can be obtained using the recursive formula

where      denotes the network realized at the n’th time step so that             would be the 
entire network.

 A formula for the prior          is obtained by averaging               over all possible 
permutations

However, as the number of nodes increases, the 
number of permutations grows dramatically. 

An approximation used in our implementa-
tion is described below (see extra notes).

       
 

P(k) ∝ k−γ  

 

V = {v1,K,vN }  
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  5. MCMC
  MCMC is a widely used tool for ex-

ploring the space of graphical structures; or 
in other words, approximating the posterior 

distribution             . We implemented the 
Metropolis-Hastings sampler for searching the 

space of non-decomposable graphs. Details of how 
the transition step from G to G’ is implemented are 

given below (see extra notes). 

P(G | Y )  

      6. A Numerical Example
 We applied the new prior to S. cerevisiae gene expression data. We focused on 32 genes which 
are shown in the table below. The Metropolis-Hasting sampler was run for 250,000 steps (we used 
Transition type-1 for the first 10,000 steps for fast convergence to the stationary distribution and 
Transition type-2 thereafter) we took            . Figures 1,2,3, and 4 are the resulting networks 
using different priors; they had the highest log posterior probabilities in each chain.

Figure 1: Estimated gene network using the uniform prior over all graphs. This network is very 
dense and the number of edges a node has is almost uniform, which is inconsistent with biological 
observation [8,9].
Figure 2: Estimated gene network using a Bernoulli prior on each edge inclusion probability. This 
approach to prior specification penalizes only the number of edges, so the estimated network is 
sparser, but the number of edges per node is almost uniform and is inconsistent, again, with bio-
logical observation [8,9]. 
Figure 3: Estimated gene network using a static model based scale-free prior. This time the net-
work is sparse and it has hubs (i.e. node 30), which is consistent with biological observation [8.9].
Figure 4: Estimated gene network using the dynamic model based scale-free prior. It also exhibits 
a scale-free structure with node 30 a major hub. This network distinguishes itself from the scale-
free one in Figure 3 as nodes 10 and 12 are hubs, which agrees with biological evidence [9].
Figure 5: This plot shows that nodes 10 and 12 were the only nodes that differed by more than 2 
edges in the estimated networks using the static and dynamic priors. 

γ = 2.2

 gene  gene  gene  gene 
1 RAD51 9 SPO16 17 MCM1 25 SIP3 
2 CLN1 10 FKH2 18 ACE2 26 SMK1 
3 CLB2 11 MBP1 19 GAT3 27 UGA3 
4 BUD9 12 SWI6 20 ACA1 28 UME6 
5 TSL1 13 NDD1 21 KRE33 29 WAR1 
6 JIP1 14 STE12 22 RCO1 30 YER184C 
7 EGT2 15 SWI4 23 RFX1 31 YGR067C 
8 SWI5 16 FKH1 24 SFL1 32 YRR1 
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