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In recent years, a large amount of gene expression data has 
been collected and estimating a gene network has become one of 
the central topics in the field of bioinformatics. Several 
methodologies have been proposed for constructing a gene 
network based on gene expression data and Gaussian 
graphical model is also one of the effective methods. When we 
look at the method from a Bayesian perspective, 
questions of the nature and consistency of prior 
probability specification (prior probabilities 
over graphical structure etc) have yet to be 
definitively determined, though a lot of 
ideas have been suggested [2, 4].
  Recent studies of networks such as the 
Internet or World Wide Web  have 
revealed that the probability that a node 
of these networks has k edges, or 
equivalently k adjacent nodes, follows a 
power law                      over a large range 
of k, with an exponent    that ranges 
between 1 and 3 depending on the system. 
Such netwoks are called scale free and this 
property is suggested to be appropriate for 
biological netwoks as well [6].
  In this study, we propose a new prior based 
on this property of “real-world” networks. 
This method is applied to S. cerevisiae gene 
expression data [1].
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  Graphical models provide representations of 
the conditional independence structure of a 
multivariate distribution as well as access to 
efficient algorithms for computaion of conditional and 
marginal densities. Multivariate Gaussian graphical 
models are defined in terms of Markov properties, i.e., 
conditional independences associated with the underlying graph. 
Thus, model selection can be performed by testing these 
conditional independences, which are equivalent to specified 
zeros among certain (partial) correlation coefficients. The graph 
G consists of a set of nodes V and a set of edges E. Two nodes      
and      are conditionally independent given the remaining 
variables if, and only if,                  . The details of Gaussian 
graphical model are described in [2].
Formal inference is inherently structured by composition; from a 
Bayesian perspective, we are interested in posterior distributions

                                                                               .

For the first term              , we refered to [2] and, in our study, we 
propose the way to constitute a new prior           .

  As discussed previously, it has been observed that many biological networks share global properties and 
their degree sequences k (the number of edges per node) often follow a long-tailed power-law 

distribution,                     . Thus, we would like to construct the prior based on this property. 
The algorithm, which is based on the model introduced in [3, 5], to assign a prior probability 
to any given graph G with a fixed set of nodes (                             ) can be expressed as 
follows:

  However, as the number of nodes gets larger, the number of 
permutations dramatically increases. A possible approximation is 
to generate randomly    for B times (say B = 10,000) in the 
summation of Step 3, but we consider rather better 
approximation methods in Section     .

MCMC is a much used tool for exploring the space of graphical 
structures. We implemented the Metropolis-Hastings sampler for a 

search of not only decomposable but also non-decomposable graph space. 
At this sampler, the choice to add or delete an edge was made, and then an 

edge was selected at random from those appropriate for that type of move. The 
transition from     to     and approximate methods for calculating the prior probability 

of G are as follows:

{vi, vj} /∈ E

P (G|Y ) ∝ P (Y |G)P (G)

γ

P (k) ∝ k−γ

vi

vj

We applied the new prior to the S. cerevisiae gene expression data. We focused on 32 
genes which are arranged in the right table. The Metropolis-Hastings was run for 
1,000,000 steps (we used Trasition type-1 until 10,000 steps for fast convergence to 
the stationary distribution and Transition type-2 for the rest) and we took     = 2.2 and 
K =            . Figure 1, Figure 2 and Figure 3 are the resulting networks using different 
priors and they had the highest log posterior probabilities in each chain. 

P (k) ∝ k−γ

V = {v1, . . . , vN}

     First, we calculate the the following numbers for                    , 

     where                    .
     Let                             be a permutation of                  . For a given permutaion,
     are assigned to                 , respectively, and the conditional probability of G is defined   
     by

           
                           where                     and we can select K on the condition that
                               with                 and                  .
                                      We define         by averaging            over all permutaions

gene name gene name

1 RAD51 17 MCM1

2 CLN1 18 ACE2

3 CLB2 19 GAT3

4 BUD9 20 ACA1

5 TSL1 21 KRE33

6 JIP1 22 RCO1

7 EGT2 23 RFX1

8 SWI5 24 SFL1

9 SPO16 25 SIP3

10 FKH2 26 SMK1

11 MBP1 27 UGA3

12 SWI6 28 UME6

13 NDD1 29 WAR1

14 STE12 30 YER184C

15 SWI4 31 YGR067C

16 FKH1 32 YRR1

γ

i = 1, . . . , N

Pi =
i−µ

P

N
j=1

j−µ ≈
1−µ

N1−µ i−µ

µ = 1/(γ − 1)

P (Y |G)
P (G)

σ = {σ1, . . . ,σN} {1, . . . , N} σ1, . . . ,σN

v1, . . . , vN

P (G|σ) =
∏

{vi,vj}∈E

(1 − e
−2NKPσi

Pσj )
∏

{vi,vj}/∈E

e
−2NKPσi

Pσj

= e
−NK(1−M2)

∏

{vi,vj}∈E

(e2NKPσi
Pσj − 1)

M2 ≡

∑N

i=1
P 2

i Kl ! K ! Ku

Kl ∼ N−µ
Ku ∼ N1−µ
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We define 
, where                     .
At each MCMC iteration, we 
change the graph structure from 
    to      by adding or deleting an 
edge randomly and we also 
change     to     at the same time 
by choosing      in a 
“neighborhood” of     . We have 
used the following definition of 
the neighborhood:                   ,
                for randomly 
generated i in                      , 
where              for 
Then the Metropolis-Hastings 
ratio for the prior part can be 
calculated with                            .

P (G,σ) = P (G|σ)P (σ)
P (σ) = 1/N !

σ
′ = {1, 5, 3, 2, 4}

G G′

σ

•Figure 1: Estimated gene network using the uniform prior over all graph 
structures. This network is very dense and the number of edges a node 
has is almost uniform, which is inconsistent with the biological 
observations [6, 7].

•Figure 2: Estimated gene network using a Bernoulli prior on each edge 
inclusion probability. This approach to prior specification penalizes only 
the number of edges, so the estimated network is sparser, but the number 
of edges per node is almost uniform and it is inconsistent with the 
biological observations [6, 7].

•Figure 3: Estimated gene network using the proposed scale-free prior. It 
shows that the estimated network based on scale-free priors is sparser 
and it has hubs (ex. node 30), which is consistent with the biological 
observations [6, 7].

σ

At each MCMC step, we change the 
graph structure by adding or 
deleting an edge randomly and an 
approximation for calculating the 
prior probability of G is to calculate   
           based on the permutaion      
that maximizes            instead of 
averaging            ; the more edges a 
node has, the smaller number i we 
assign to the node, and we define       
         proportional to           .

P (G|σ̂) σ̂

P (G|σ)

P (G|σ)

P (G) P (G|σ̂)

P (G) P (G|σ)

σ
′

σ
′

σ

τ
′

i
= τi+1

τ
′

i+1 = τi

{1, . . . , N − 1}
τj = i σi = j.
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σ: all permutations

P (G|σ)

P (G′,σ′)/P (G,σ)


