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1 Introduction
In recent years, a large amount of gene expression data has been collected and estimating a gene
network has become one of the central topics in the field of bioinformatics. Several methodologies
have been proposed for constructing a gene network based on gene expression data and Gaussian
graphical model is also one of the effective methods. When we look at the method from a Bayesian
perspective, questions of the nature and consistency of prior probability specification (prior probabil-
ities over graphical structure etc) have yet to be definitively determined, though a lot of ideas have
been suggested [2, 4].

Recent studies of networks such as the Internet or World Wide Web have revealed that the prob-
ability that a node of these networks has k edges, or equivalently k adjacent nodes, follows a power
law P (k) ∝ k−γ over a large range of k, with an exponent γ that ranges between 1 and 3 depending
on the system. Such networks are called scale free and this property is suggested to be appropriate
for biological networks as well [6].

In this study, we propose a new prior based on this property of “real-world” networks. This
method is applied to S. cerevisiae gene expression data [1]. This work is supported in part by Grant
KAKENHI-17700276 from MEXT of Japan.

2 Methods
2.1 Gaussian Graphical Model (GGM)
Graphical models provide representations of the conditional independence structure of a multivari-
ate distribution as well as access to efficient algorithms for computation of conditional and marginal
densities. Multivariate Gaussian graphical models are defined in terms of Markov properties, i.e., con-
ditional independences associated with the underlying graph. Thus, model selection can be performed
by testing these conditional independences, which are equivalent to specified zeros among certain
(partial) correlation coefficients. The graph G consists of a set of nodes V and a set of edges E. Two
nodes vi and vj are conditionally independent given the remaining variables if, and only if, {vi, vj}
/∈ E. The details of Gaussian graphical model are described in [2].
2.2 Markov Chain Monte Carlo Algorithm
MCMC is a much used tool for exploring the space of graphical structures. We implemented the
Metropolis-Hastings sampler for a search of not only decomposable but also non-decomposable graph
space. At this sampler, the choice to add or delete an edge was made, and then an edge was selected
at random from those appropriate for that type of move.
2.3 Scale-free Priors over Graphs
As discussed previously, it has been observed that many biological networks share global properties
and their degree sequences k (the number of edges per node) often follow a long-tailed power-law
distribution, P (k) ∝ k−γ . Thus, we would like to construct the prior based on this property. The
algorithm, which is based on the model introduced in [3, 5], to assign a prior probability to any given
graph G with a fixed set of nodes (V = {v1, . . . , vN}) can be expressed as follows:



1. First, we calculate the following numbers for i = 1, . . . , N ,

Pi =
i−µ

∑N
j=1 j−µ

≈ 1 − µ

N1−µ
i−µ,

where µ = 1/(γ − 1).
2. Let σ = {σ1, . . . , σN} be a permutation of {1, . . . , N}. For a given permutation, σ1, . . . , σN are

assigned to v1, . . . , vN , respectively, and the conditional probability of G is defined by

P (G|σ) =
∏

{vi,vj}∈E

(1 − e−2NKPσi
Pσj )

∏

{vi,vj}/∈E

e−2NKPσi
Pσj

= e−NK(1−M2)
∏

{vi,vj}∈E

(e2NKPσiPσj − 1),

where M2 ≡ ∑N
i=1 P 2

i and we can select K on the condition that Kl � K � Ku with Kl ∼ N−µ

and Ku ∼ N1−µ .
3. We randomly generate σ for B times, and the prior of G is calculated by averaging P (G|σ)

P (G) =
1
B

∑

σ

P (G|σ).

An approximation for calculating the prior probability of G is to calculate P (G|σ̂) based on the
permutation σ̂ that maximizes P (G|σ) instead of averaging P (G|σ); the more edges a node has, the
smaller number i we assign to the node, and we define P (G) proportional to P (G|σ̂).
3 A Numerical Example
We applied the new prior to the S. cerevisiae gene expression data. We focused on 30 genes which
are related to cell cycle. The Metropolis-Hastings was run for 100,000 steps and we took γ = 2.2 and
K = 0.8. Figure 1 and Figure 2 are the resulting networks using different priors. They show that the
estimated network based on scale-free priors is sparser and it has hubs, which is consistent with the
proposition described in [2, 6].
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Figure 1: Estimated gene network using the pro-
posed scale-free prior.
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Figure 2: Estimated gene network using the uni-
form prior over all graph structures.
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