Multiscale Bootstrap Analysis of Gene Networks Based
on Bayesian Networks and Nonparametric Regression
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Introduction

The Bayesian network [2, 3, 4] is a very powerful tool for estimating the gene
network from microarray expression profiles. The estimated network is often
susceptible to statistical sampling error, and thus Imoto et al. [3, 4] evaluated
the reliability of estimation by calculating the bootstrap probabilities for the
edges connecting genes. The bootstrap method, however, underestimates the
probability values, and it sometimes leads to false "discovery". For improving
the accuracy of the bootstrap probability, we propose the application of the
newly developed multiscale bootstrap [5, 6] to the gene network estimation.

Method

1. Nonlinear Bayesian Network Model

—— Nonparametric Heteroscedastic Regression

1. What is Bayesian network?
+ DAG encoding the Markov assumption.

We consider the additive regression model:
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2. How can we capture the nonlinear relation-
ships between genes?
3. How can we choose the optimal graph?

Here m «(+) is @ smooth function
from R to R.

BNRC(Bayesian network and
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We choose the graph that minimizes the value of BNRC

2. Bootstrap and Multiscale Bootstrap
Edge Intensity

We measure the intensity of the edge by the bootstrap and multiscale bootstrap
method. In the multiscale bootstrap method, we generate replicates X, =

(x3, ..., x, ) for several n'values from the original gene expression data X,
=(xy, ..., x, ). Inother words, we alter the number of arrays from n to n’

in the bootstrap replication. We will take n'values with n/n = 0.5, 0.6, 0.7, 0.8,
0.9,1.0,1.1,1.2, 1.3, 1.4, in the example shown later. We call 7 = ,/n/n" scale.

The Bootstrap Algorithm with n" arrays
Step1: Generate the bootstrap replicate X
Step2: Estimate the gene network from X
Step3: Iterate Step1 and Step2 B times. Then we obtain B gene networks.
Step4: If the edges gene, — gene, and gene; — gene, exists k(7 )and
k, (T ) times, respectively, in the B networks, we then define the bootstrap
edge intensity between gene, and gene,, BP (1) as(k,(T)+ ko(T)) I B

e

The bootstrap edge intensity

BP,(T)=(ki(T)+k:(T))/B

Figure2: The conceptual figure
of the multiscale bootstrap methods
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Figure1: The conceptual figure
of the bootstrap method.
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The bootstrap method The multiscale bootstrap method

- We calculate BF,/(T) with several T values

- We take n"= n. by altering n’/n.

- The bootstrap edge intensity can be
written as BE/ (1)

- The very accurate edge intensiy
is expressed as MS;=1-®(d; — [ )-
d,;: signed distance
C;; = curvature
o : distribution function of standard normal
distribution.

* We estimate djand Cj; by flttlng the
theoretical curve BR, (T)=1-®(d;/T +c, T)
to the observed BP. (7) values calculatéd
by the multiscale bootstrap method.

Result

* We applied the proposed method to S.cervisiae gene expressin data.

+ We focusd on 9 genes, which are involved or putatively involved in the heat shock
response.
- We took B = 10000.
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multiscale bootstrap intensities. g prthe observed BP, (T )values.
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