
Figure 2: The resulting network.
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Introduction

The Bayesian network [2, 3, 4] is a very powerful tool for estimating the gene
network from microarray expression profiles. The estimated network is often
susceptible to statistical sampling error, and thus Imoto et al. [3, 4] evaluated
the reliability of estimation by calculating the bootstrap probabilities for the
edges connecting genes. The bootstrap method, however, underestimates the
probability values, and it sometimes leads to false "discovery". For improving
the accuracy of the bootstrap probability, we propose the application of the 
newly developed multiscale bootstrap [5, 6] to the gene network estimation.

Method

1. Nonlinear Bayesian Network Model

2. Bootstrap and Multiscale Bootstrap
    Edge Intensity

Result
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We measure the intensity of the edge by the bootstrap and multiscale bootstrap
method. In the multiscale bootstrap method, we generate replicates         =                  
                          for several n' values from the original gene expression data 
                             . In other words, we alter the number of arrays from n to n' 
in the bootstrap replication. We will take n' values with n'/n = 0.5, 0.6, 0.7, 0.8, 
0.9, 1.0, 1.1, 1.2, 1.3, 1.4, in the example shown later. We call                     scale.  τ = √n/n'

The Bootstrap Algorithm with n' arrays
Step1: Generate the bootstrap replicate       .
Step2: Estimate the gene network from       .
Step3: Iterate Step1 and Step2 B times. Then we obtain B gene networks.
Step4: If the edges                            and                           exists            and 
           times, respectively, in the B networks, we then define the bootstrap 
edge intensity between            and            ,              , as                                .
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Table 1: Gene pairs with high
multiscale bootstrap intensities.

gene i jgene MSi j

YBR072W   
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1.000
1.000
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0.994
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0.918
0.915

BPi j

0.985
0.998
0.999
0.972
0.938
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0.835
0.885
0.642
0.922
0.851

Figure 3: The curve fitting to
the observed              values. BP  (τ)i j
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BNRC

We choose the graph that minimizes the value of BNRC

     BNRC(Bayesian network and
Nonparametric Regression Criterion)
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We consider the additive regression model:

 Function of the
 1st parent

Function of the
q  th parentj

Here m   (  ) is a smooth function
from R to R.

.
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Nonparametric Heteroscedastic Regression
1. What is Bayesian network?

・DAG encoding the Markov assumption.

(DAG : Directed acyclic graph)

・The joint density can be computed by the
product of the conditional densities.

2. How can we capture the nonlinear relation-
    ships between genes?
3. How can we choose the optimal graph?

: 0.850               0.900< =<i jMS  
: 0.900               0.950< =<i jMS  
: 0.950               1.000< =<i jMS  The number next to the line : degee of the edge direction.

・We applied the proposed method to S.cervisiae gene expressin data.

・We focusd on 9 genes, which are involved or putatively involved in the heat shock
response.

・We took B = 10000.
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   Figure2: The conceptual figure
of the multiscale bootstrap method.
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Figure1: The conceptual figure
      of the bootstrap method.

・We take n' = n. 
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・
i jBP  (1)

The bootstrap edge intensity can be
written as          . 

The bootstrap method The multiscale bootstrap method
i jBP  (τ)・We calculate           with several τvalues

by altering n'/n. 

i jBP  (τ)
i jBP  (τ) = c  τi j

1－Φ(                     )d  i j /τ +
di j ci j・We estimate     and      by fitting the 

theoretical curve 
to the observed           values calculated
by the multiscale bootstrap method.

・
i jMS  =  1－Φ(               )ci jdi j －

The very accurate edge intensiy
is expressed as                               .
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The bootstrap edge intensity

: distribution function of standard normal 
  distribution.

di j : signed distance
ci j : curvature
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