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Review on Positive Definite Kernels I
Proposition 1

If ki : X × X → C (i = 1, 2, . . .) are positive definite kernels,
then so are the following:

1. (positive combination) ak1 + bk2 (a, b ≥ 0).

2. (product) k1k2 (k1(x, y)k2(x, y)) .

3. (limit) limi→∞ki(x, y), assuming the limit
exists.

Remark. Proposition 1 says that the set of all positive definite
kernels is closed (w.r.t. pointwise convergence) convex cone
stable under multiplication.

Example: If k(x, y) is positive definite,

ek(x,y) = 1 + k +
1

2
k2 +

1

3!
k3 + · · ·

is also positive definite.
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Review on Positive Definite Kernels II
Proposition 2

Let k : X × X → C be a positive definite kernel and f : X → C
be an arbitrary function. Then,

k̃(x, y) = f(x)k(x, y)f(y)

is positive definite. In particular,

f(x)f(y)

is a positive definite kernel.

Example. Normalization:

k̃(x, y) =
k(x, y)√

k(x, x)k(y, y)
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Negative Definite Kernel

Definition. A function ψ : X × X → C is called a negative
definite kernel if it is Hermitian i.e. ψ(y, x) = ψ(x, y), and

n∑
i,j=1

cicjψ(xi, xj) ≤ 0

for any x1, . . . , xn (n ≥ 2) in X and c1, . . . , cn ∈ C with∑n
i=1 ci = 0.

Note: a negative definite kernel is not necessarily minus
positive definite kernel, because we need the condition∑n

i=1 ci = 0.
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Properties of negative definite kernels
Proposition 3

1. If k is positive definite, ψ = −k is negative definite.

2. Constant functions are negative definite.

Proof. (2)
∑n
i,j=1cicj =

∑n
i=1ci

∑n
j=1cj = 0.

Proposition 4

If ψi : X × X → C (i = 1, 2, . . .) are negative definite kernels,
then so are the following:

1. (positive combination) aψ1 + bψ2 (a, b ≥ 0).

2. (limit) limi→∞ψi(x, y), assuming the limit
exists.

• The set of all negative definite kernels is a closed convex
cone.

• Multiplication does not preserve negative definiteness.
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Example of Negative Definite Kernel

Proposition 5
Let V be an inner product space, and φ : X → V . Then,

ψ(x, y) = ‖φ(x)− φ(y)‖2

is a negative definite kernel on X .

Proof. [Exercise]
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Relation Between Positive and Negative Definite
Kernels

Lemma 6

Let ψ(x, y) be a hermitian kernel on X . Fix x0 ∈ X and define

ϕ(x, y) = −ψ(x, y) + ψ(x, x0) + ψ(x0, y)− ψ(x0, x0).

Then, ψ is negative definite if and only if ϕ is positive definite.

Proof. "If" part is easy (exercise). Suppose ψ is neg. def. Take any
xi ∈ X and ci ∈ C (1 = 1, . . . , n). Define c0 = −

∑n
i=1 ci. Then,

0 ≥
∑n
i,j=0cicjψ(xi, xj) [for x0, x1, . . . , xn]

=
∑n
i,j=1cicjψ(xi, xj) + c0

∑n
i=1ciψ(xi, x0) + c0

∑n
j=1ciψ(x0, xj)

+ |c0|2ψ(x0, x0)

=
∑n
i,j=1cicj

{
ψ(xi, xj)− ψ(xi, x0)− ψ(x0, xj) + ψ(x0, y0)

}
= −

∑n
i,j=1cicjϕ(xi, xj).
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Schoenberg’s Theorem
Theorem 7 (Schoenberg’s theorem)
Let X be a nonempty set, and ψ : X × X → C be a kernel.
ψ is negative definite if and only if exp(−tψ) is positive definite
for all t > 0.

Proof.
If part:

ψ(x, y) = lim
t↓0

1− exp(−tψ(x, y))

t
.

Only if part: We can prove only for t = 1. Take x0 ∈ X and
define

ϕ(x, y) = −ψ(x, y) + ψ(x, x0) + ψ(x0, y)− ψ(x0, x0).

ϕ is positive definite (Lemma 6).

e−ψ(x,y) = eϕ(x,y)e−ψ(x,x0)e−ψ(y,x0)eψ(x0,x0).

This is also positive definite.
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Generating New Kernels I
Proposition 8
If ψ : X × X → C is negative definite and ψ(x, x) ≥ 0. Then, for
any 0 < p ≤ 1,

ψ(x, y)p

is negative definite.

Proof. Use the formula

zp =
p

Γ(1− p)

∫ ∞
0

t−p−1(1− e−tz)dt (z ∈ C).

Then,

ψ(x, y)p =
p

Γ(1− p)

∫ ∞
0

t−p−1(1− e−tψ(x,y))dt

The integrand is negative definite for all t > 0. .
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Generating New Kernels II

• For any 0 ≤ p ≤ 2,
‖x− y‖p

is negative definite on Rm.

• For any 0 ≤ p ≤ 2 and α > 0,

exp(−α‖x− y‖p)

is positive definite on Rn.
• α = 2⇒ Gaussian kernel.
• α = 1⇒ Laplacian kernel.
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Generating New Kernels III

Proposition 9
If ψ : X × X → C is negative definite and Reψ(x, y) ≥ 0. Then,
for any a > 0,

1

ψ(x, y) + a

is positive definite.

Proof.
1

ψ(x, y) + a
=

∫ ∞
0

e−t(ψ(x,y)+a)dt.

The integrand is positive definite for all t > 0. .

For any 0 < p ≤ 2,
1

1 + ‖x− y‖p

is positive definite on Rm. (p = 2: Cauchy kernel.)
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Positive definite functions

Definition. Let φ : Rn → C be a function. φ is called a positive
definite function (or function of positive type) if

k(x, y) = φ(x− y)

is a positive definite kernel on Rn, i.e.,∑n
i,j=1cicjφ(xi − xj) ≥ 0

for any x1, . . . , xn ∈ X and c1, . . . , cn ∈ C.

• A positive definite kernel of the form φ(x− y) is called shift
invariant (or translation invariant).

• Examples: Gaussian and Laplacian kernels.

16 / 52



Bochner’s theorem I

The Bochner’s theorem characterizes all the continuous
shift-invariant kernels on Rn.

Theorem 10 (Bochner)
Let φ be a continuous function on Rn. Then, φ is positive
definite if and only if there is a finite non-negative Borel
measure Λ on Rn such that

φ(x) =

∫
e
√
−1ωT xdΛ(ω).

• φ is the inverse Fourier (or Fourier-Stieltjes) transform of Λ.

• Roughly speaking, the shift invariant functions are the
class that have non-negative Fourier transform.
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Bochner’s Theorem II

• The Fourier kernel e
√
−1xTω is a positive definite function

for every ω ∈ Rn.

exp(
√
−1(x− y)Tω) = exp(

√
−1xTω)exp(

√
−1yTω).

• The set of all positive definite functions is a convex cone,
which is closed under the pointwise-convergence topology.

• The generator of the convex cone is the Fourier kernels
{e
√
−1xTω | ω ∈ Rn}.
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( )xTω1exp −

The closed cone of positive definite functions.
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Bochner’s theorem III

• Example on R: (positive constants are neglected)

p.d. function Fourier transform

exp(− 1
2σ2x

2) exp(−σ2

2 |ω|
2)

exp(−α|x|) 1

ω2 + α2

1

x2 + α2
exp(−α|ω|)

• Bochner’s theorem can be extended to toplogical groups
and semigroups [BCR84].
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Explicit Realization of RKHS by Bochner’s Theorem I

Assume in the Bochner’s theorem dΛ = ρ(ω)dω, i.e.,

k(x, y) =

∫
e
√
−1ωT (x−y)ρ(ω)dω,

ρ(ω) is continuous for every ω, and
∫
ρ(ω)dω <∞.

(e.g. Gaussian, Laplacian, Cauchy.)

Then, the RKHS Hk is given by1

Hk =
{
f ∈ L2(Rm, dx)

∣∣∣ ∫ |f̂(t)|2

ρ(t)
dt <∞

}
,

〈f, g〉Hk =

∫
f̂(t)ĝ(t)

ρ(t)
dt.

1f̂ denotes the Fourier transform defined by f̂ = 1
(2π)m

∫
e−
√
1ωT xf(x)dx.
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Explicit Realization of RKHS by Bochner’s Theorem II
• Hk is a Hilbert space consisting of functions on Rm.
• 〈·, ·〉Hk defines an inner product on Hk.

• k(·, x) is the reproducing kernel of Hk:
Proof. From

k(x, y) =

∫
e
√
−1ωT (x−y)ρ(ω)dω =

∫
e
√
−1ωT xe−

√
−1ωT yρ(ω)dω,

the Fourier transform of k(·, y) (y fixed) is given by

k̂(·, y)(ω) = e−
√
−1ωT yρ(ω).

Thus,

〈f, k(·, y)〉Hk =

∫
f̂(ω)e

√
−1ωT yρ(ω)

ρ(ω)
dω

=

∫
f̂(ω)e

√
−1ωT ydω = f(y).
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Examples

• Gaussian RBF kernel: ρ(t) = 1
2π exp{−σ2

2 ω
2},

Hk =
{
f ∈ L2(R, dx)

∣∣∣ ∫ |f̂(ω)|2 exp
(σ2

2
ω2
)
dω <∞

}
,

〈f, g〉Hk =

∫
f̂(ω)ĝ(ω) exp

(σ2

2
ω2
)
dω

• Laplacian kernel: ρ(ω) = 1
2π

1
ω2+β2 ,

Hk =
{
f ∈ L2(R, dx)

∣∣∣ ∫ |f̂(ω)|2(ω2 + β2)dt <∞
}
,

〈f, g〉 =

∫
f̂(ω)ĝ(ω)(ω2 + β2)dω.
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• Cauchy kernel: ρ(ω) = 1
2πe
−α|ω|,

Hk =
{
f ∈ L2(R, dx)

∣∣∣ ∫ |f̂(ω)|2eα|ω|dω <∞
}
,

〈f, g〉Hk =

∫
f̂(ω)ĝ(ω)eα|ω|dω.

• Note in the above three examples the RKHS’s admits
different decay rates of frequency.
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Complete Orthonormal System

• A subset {ui}i∈I of H is called an orthonormal system
(ONS) if (ui, uj) = δij (δij is Kronecker’s delta).

• A subset {ui}i∈I of H is called a complete orthonormal
system (CONS) (orthonormal basis) if it is ONS and if
(x, ui) = 0 (∀i ∈ I) implies x = 0.

• A Hilbert space is called separable if it has a countable
CONS.
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Fourier Expansion
Theorem 11 (Fourier series expansion)
Let {ui}∞i=1 be a CONS of a separable Hilbert space. For each
x ∈ H,

x =
∑∞

i=1(x, ui)ui, (Fourier expansion)

‖x‖2 =
∑∞

i=1|(x, ui)|
2. (Parseval’s equality)

Proof omitted.

Example: CONS of L2([0 2π], dx)

un(t) = 1√
2π
e
√
−1nt (n = 0, 1, 2, . . .)

Then,
f(t) = 1√

2π

∑∞
n=−∞ane

√
−1nt

is the (ordinary) Fourier expansion of a periodic function.
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Bounded Operator I
Let H1 and H2 be Hilbert spaces. A linear transform
T : H1 → H2 is often called operator.

Definition. A linear operator H1 and H2 is called bounded if

sup
‖x‖H1

=1
‖Tx‖H2 <∞.

The operator norm of a bounded operator T is defined by

‖T‖ = sup
‖x‖H1

=1
‖Tx‖H2 = sup

x 6=0

‖Tx‖H2

‖x‖H1

.

(Corresponds to the largest singular value of a matrix.)

Fact. If T : H1 → H2 is bounded,

‖Tx‖H2 ≤ ‖T‖‖x‖H1 .

29 / 52



Bounded Operator II

Proposition 12
A linear operator is bounded if and only if it is continuous.

Proof. Assume T : H1 → H2 is bounded. Then,

‖Tx− Tx0‖ = ‖T (x− x0)‖ ≤ ‖T‖‖x− x0‖

means continuity of T .

Assume T is continuous. For any ε > 0, there is δ > 0 such that
‖Tx‖ < ε for all x ∈ H1 with ‖x‖ < 2δ.
Then,

sup
‖x‖=1

‖Tx‖ = sup
‖x‖=δ

1

δ
‖Tx‖ ≤ ε

δ
.
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Hilbert-Schmidt Operator I
H: separable Hilbert space.

Definition. An operator T on H is called Hilbert-Schmidt if for a
CONS {ϕi}∞i=1

∞∑
i=1

‖Tϕi‖2 <∞,

and its Hilbert-Schmidt norm ‖T‖HS is defined by

‖T‖HS =
(∑∞

i=1‖Tϕi‖
2
)1/2

.

• ‖T‖HS does not depend on the choice of a CONS.
∵) From Parseval’s equality, for a CONS {ψj}∞j=1,

‖T‖2HS =
∑∞
i=1‖Tϕi‖

2 =
∑∞
i=1

∑∞
j=1|(ψj , Tϕi)|

2

=
∑∞
j=1

∑∞
i=1|(T

∗ψj , ϕi)|2 =
∑∞
j=1‖T

∗ψj‖2.
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Hilbert-Schmidt Operator II

• Fact: ‖T‖ ≤ ‖T‖HS .

(∵) Let u1 be the unit vector such that ‖Tu1‖ ≥ ‖T‖ − ε. Make
CONS including u1 and compute ‖T‖2HS . )

• Hilbert-Schmidt norm is an extension of Frobenius norm of
a matrix:

‖T‖2HS =

∞∑
i=1

∞∑
j=1

|(ψj , Tϕi)|2.

(ψj , Tϕi) is the component of the matrix expression of T
with the CONS’s {ϕi} and {ψj}.
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Integral Kernel
(Ω,B, µ): measure space.

K(x, y): measurable function on Ω× Ω such that∫
Ω

∫
Ω
|K(x, y)|2dµ(x)dµ(y) <∞. (square integrability)

Def. Operator TK : L2(Ω, µ)→ L2(Ω, µ) by

(TKf)(x) =

∫
Ω
K(x, y)f(y)dµ(y) (f ∈ L2(Ω, µ)).

TK : integral operator with integral kernel K.

Fact: TKf ∈ L2(Ω, µ).

∵)
∫
|TKf(x)|2dx =

∫ ∣∣∫K(x, y)f(y)dµ(y)
∣∣2dµ(x)

≤
∫ ∫
|K(x, y)|2dµ(y)

∫
|f(y)|2dµ(y)dµ(x)

=
∫ ∫
|K(x, y)|2dµ(x)dµ(y)‖f‖2L2 .
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Hilbert-Schmidt Operator and Integral Kernel I

Theorem 13
Let (Ω,B, µ) be a measure space, and assume L2(Ω, µ) is
separable. Then, TK is a Hilbert-Schmidt operator, and

‖TK‖2HS =

∫ ∫
Ω×Ω
|K(x, y)|2dµ(x)dµ(y).

Proof. Let {ϕi} be a CONS. From Parseval’s equality,∫
|K(x, y)|2dy =

∑
i

∣∣(K(x, ·), ϕi)L2

∣∣2 =
∑
i

∣∣∫K(x, y)ϕi(y)dy
∣∣2 =

∑
i|TKϕi(x)|2.

Integrate w.r.t. x, ({ϕi} is also a CONS)∫ ∫
|K(x, y)|2dxdy =

∑
i‖TKϕi‖

2 = ‖TK‖2HS .
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Hilbert-Schmidt Operator and Integral Kernel II

Converse is also true!

Theorem 14
Let (Ω,B, µ) be a measure space, and assume L2(Ω, µ) is
separable. For any Hilbert-Schmidt operator T on L2(Ω, µ),
there is a square integrable kernel K(x, y) such that

Tϕ =

∫
K(x, y)ϕ(y)dµ(y)

(
= TKϕ

)
.

Proof omitted.
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Hilbert-Schmidt Expansion I
• (Ω,B, µ): measure space.
• K(x, y): Hermitian (K(y, x) = K(x, y)) square integrable

kernel.

• Fact: TK is self-adjoint, i.e.,

(TKf, g) = (f, TKg) (∀f, g ∈ L2(Ω, µ)).

Proof.

(TKf, g) =
∫ ∫

K(x, y)f(y)g(x)dµ(x)dµ(Y )

=
∫
f(y)

∫
K(y, x)g(x)dµ(x)dµ(y) = (f, TKg).

• For Hermite kernels, TK admits eigendecompsition in an
analogous way to Hermitian (or symmetric) matrices.
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Hilbert-Schmidt Expansion II
A self-adjoint Hilbert-Schmidt operator admits Hilbert-Schmidt
expansion:

• Every eigenvalue of TK is a real value.

• The eigenspace of each eigenvalue is finite dimensional.

• Let
|λ1| ≥ |λ2| ≥ · · · > 0

be the non-zero eigenvalues (counted as multiplicity).

• Let φi be the unit eigenvector w.r.t. λi.

• Hilbert-Schmidt expansion

TKf =
∞∑
i=1

λi(f, φi)φi.

38 / 52



Hilbert-Schmidt Expansion III
Theorem 15
Let K be a Hermitian square integrable kernel, and λi, φi as
above.

K(x, y) =

∞∑
i=1

λiφi(x)φi(y)

in L2(Ω× Ω, µ× µ).

(Proof omitted.) This is a generalization of eigendecomposition.

c.f. A: m×m Hermitian (or symmetric) matrix.
{λi}mi=1: the eigenvalues of A. ui: unit eigenvector w.r.t. λi.
Then,

A =
m∑
i=1

λiuiu
∗
i ,

Av =

m∑
i=1

λi(v, ui)ui.
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Integral Kernel and Positive Definiteness I
Consider positive definite K(x, y).

Proposition 16 (Positive definiteness)

Let D be a compact subset of Rm, and K(x, y) be a continuous
symmetric kernel on Ω× Ω.
K(x, y) is positive definite on Ω if and only if∫ ∫

D×D
K(x, y)f(x)f(y)dxdy ≥ 0

for any f ∈ L2(D).

c.f. Definition of positive definiteness:∑
i,j

K(xi, xj)cicj ≥ 0.
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Integral Kernel and Positive Definiteness II

Proof.
(⇒). For a continuous function f , a Riemann sum satisfies∑

i,jK(xi, xj)f(xi)f(xj)|Ei||Ej | ≥ 0.

The integral is the limit of such sums, thus non-negative. For
f ∈ L2(Ω, µ), approximate it by a continuous function.

(⇐). Omitted. See [Fuk10, Sec. 6.3]
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Integral Operator by Positive Definite Kernel

D: compact subset of Rm.

K(x, y): continuous positive definite kernel on D.

(TKf)(x) =

∫
D
K(x, y)f(y)dy (f ∈ L2(D))

Fact: Recall from Proposition 16

(TKf, f)L2(D) ≥ 0 (∀f ∈ L2(D)).

In particular, every eigenvalue of TK is non-negative.
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Mercer’s Theorem
{λi}∞i=1 (λ1 ≥ λ2 ≥ · · · > 0), {φi}∞i=1: the positive eigenvalues
and unit eigenfunctions of TK .

From Hilbert-Schmidt expansion,

K(x, y) =
∑∞

i=1λiφi(x)φi(y),

in L2(D ×D).

Theorem 17 (Mercer)
Let K be a continuous positive definite kernel on a compact
subset D in Rm. Then,

K(x, y) =

∞∑
i=1

λiφi(x)φi(y),

where the convergence is absolute and uniform over D ×D.

Proof is omitted. See [RSN65], Sec. 98, or [Ito78], Chap. 13.
44 / 52



Explicit Expression of RKHS
Let K(x, y) be a continuous positive definite kernel on a
compact subset D in Rm.
{λi}∞i=1 (λ1 ≥ λ2 ≥ · · · > 0), {φi}∞i=1: the positive eigenvalues
and unit eigenfunctions of TK .
By adding the northonormal basis of N (TK), we have a CONS
{φi} of HK consisting of eigenvectors of TK .

Theorem 18

Hk =
{
f ∈ L2(D)

∣∣∣ f =
∞∑
i=1

aiφi,
∞∑
i=1

|ai|2

λi
<∞

}
,

and for f =
∑∞

i=1 aiφi and g =
∑∞

i=1 biφi,

〈f, g〉Hk =
∞∑
i=1

aibi
λi

,

where ai and bi are set 0 if λi = 0.
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• It is not difficult to show Hk is a Hilbert space.

• Reproducing property:
First note that by Mercer’s theorem,∑∞

i=1λi|φi(x)|2 <∞,

which means K(·, x) =
∑∞

i=1 λiφi(·)φi(x) ∈ Hk.
For arbitrary f =

∑
i=1 aiφi ∈ Hk

〈f,K(·, x)〉 =

∞∑
i=1

aiλiφi(x)

λi
=

∞∑
i=1

aiφi(x) = f(x).

• C.f., RKHS on a finite set.
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Restriction of RKHS

k: positive definite kernel on a set X . Hk: corresponding RKHS.
Y: subset of X .

k̃: restriction of k to Y × Y ⇒ positive definite kernel on Y.

Theorem 19
The RKHS corresponding to k̃ is {f |Y | f ∈ Hk}.
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Sum of RKHS

k1, k2: positive definite kernels on a set X .
H1,H2: corresponding RKHS’s.

k1 + k2: positive definite kernel on X .

Theorem 20
The RKHS corresponding to k1 + k2 is given by

H = {f1 + f2 : X → R | f1 ∈ H1, f2 ∈ H2},

and its norm is given by

‖f‖2H = min{‖f1‖2H1
+ ‖f2‖2H2

| f = f1 + f2, f1 ∈ H1, f2 ∈ H2}.
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Product of RKSH

k1, k2: positive definite kernels on set X1,X2, resp.
H1,H2: corresponding RKHS’s.

k((x1, x2), (y1, y2)) := k1(x1, y1)k2(x2, y2): positive definite
kernel on X1 ×X2.

Theorem 21
The RKHS corresponding to k is the tensor product H1 ⊗H2.

Corollary 22
If k1 and k2 are positive definite kernels on X , the RKHS
corresponding to k(x, y) = k1(x, y)k2(x, y) is the restriction of
H1 ⊗H2 to the diagonal set {(x, x) ∈ X × X | x ∈ X}.
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Tensor Product

Define inner product space H1⊗̃H2 by

H1⊗̃H2 :=
{ n∑
i=1

f
(1)
i ⊗ f

(2)
i

∣∣∣ f (1)
i ∈ H1, f

(2)
i ∈ H2, i = 1, . . . , n

}
.

〈 n∑
i=1

f
(1)
i ⊗f

(2)
i ,

m∑
j=1

g
(1)
j ⊗g

(2)
j

〉
:=

n∑
i=1

m∑
j=1

〈
f

(1)
i , g

(1)
j

〉
H1

〈
f

(2)
i , g

(2)
j

〉
H2
.

The tensor product H1 ⊗H2 is the completion of H1⊗̃H2.
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Summary of Section 5

• Negative definite kernels and positive definite kernels are
related by Schoenberg’s theorem.

• Various examples of positive definite kernels can be
derived by functional operations.

• Bochner’s theorem: characterization of continuous
shift-invariant kernels on Rm by Fourier transform.

• Based on Bochner’s theorem, RKHS for shift-invariant
kernels can be written explicitly by Fourier transform.

• Mercer’s theorem: eigendecomposition of positive definite
kernel.
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