Lecture 30. Phylogeny methods, part 2 (Searching tree space)

Joe Felsenstein

Department of Genome Sciences and Department of Biology

All possible trees

Forming all 4-species trees by adding the next species in all possible places

The number of rooted bifurcating trees:

$$1 \times 3 \times 5 \times 7 \times \ldots \times (2n-3)$$

$$= (2n-3)!/((n-2)! 2^{n-2})$$

which is:

1	1
	*
2	1
3	3
4	15
5	105
6	945
7	10,395
8	135,135
9	,027,025
10 34,	,459,425
11 654,	,729,075
12 13,749,	,310,575
13 316,234,	,143,225
14 7,905,853,	,580,625
15 213,458,046,	,676,875
16 6,190,283,353,	,629,375
17 191,898,783,962,	,510,625
18 6,332,659,870,762,	,850,625
19 221,643,095,476,699,	,771,875
20 8,200,794,532,637,891,	,559,375
30 4.951	8×10^{38}
40 1.0098	5×10^{57}
50 2.7529	2×10^{76}

Rooting an unrooted tree

A global maximum is not easy to find

is rearranged by dissolving the connections to an interior branch:

and reforming them in one of the two possible alternative ways:

Nearest-neighbor interchange (NNI) rearrangement of a tree (the triangles are subtrees)

Lecture 30. Phylogeny methods, part 2 (Searching tree space) – p.7/22

all 15 trees, connected by NNIs

with parsimony scores

Subtree pruning and regrafting (SPR) rearrangement

Tree bisection and reconnection (TBR) rearrangement

Greedy search by sequential addition

Greedy search by addition of species in a fixed order (A, B, C, D, E) in the best place each time.

Goloboff's time-saving trick

Goloboff's economy in computing scores of rearranged trees

Star decomposition

"Star decomposition" search for best tree can happen in multiple ways

Disk-covering

"Disk covering" – assembly of a tree from overlapping estimated subtrees

Shortest Hamiltonian path problem

Search tree for this problem

Lecture 30. Phylogeny methods, part 2 (Searching tree space) – p.17/22

Search tree of trees

same, with parsimony scores in place of trees

Some references

- Camin, J. H. and R. R. Sokal. 1965. A method for deducing branching sequences in phylogeny. *Evolution* **19:** 311-326. [Early parsimony paper includes rearrangement of trees]
- Cavalli-Sforza, L. L. and A. W. F. Edwards. 1967. Phylogenetic analysis: models and estimation procedures. *American Journal of Human Genetics* **19:** 233-257. also *Evolution* **21:** 550-570. [Includes counting and tree shapes]
- Farris, J. S. 1970. Methods for computing Wagner trees. *Systematic Zoology* **19:** 83-92. [Early parsimony algorithms paper is one of first to mention sequential addition strategy]
- Felsenstein, J. 1978. The number of evolutionary trees. *Systematic Zoology* **27:** 27-33. (Correction, vol. 30, p. 122, 1981) [Review of counting tip-labelled trees, recursion for counting multifurcating case]
- Foulds, L. R. and R. L. Graham. 1982. The Steiner problem in phyloge ny is NP-complete. *Advances in Applied Mathematics* **3:** 43-49. [Parsimony is NP-hard]
- Graham, R. L. and L. R. Foulds. 1982. Unlikelihood that minimal phylogenies for a realistic biological study can be constructed in reasonable computational time. *Mathematical Biosciences* **60**: 133-142. [... and more]
- Hendy, M. D. and D. Penny. 1982. Branch and bound algorithms to determine minimal evolutionary trees. *Mathematical Biosciences* **60:** 133-142 [Introduced branch-and-bound for phylogenies]

continued

- Huson, D., S. Nettles, L. Parida, T. Warnow, and S. Yooseph. 1998. The disk-covering method for tree reconstruction. pp. 62-75 in *Proceedings of "Algorithms and Experiments" (ALEX98), Trento, Italy, Feb. 9-11, 1998*, ed. R. Battiti and A. A. Bertossi. ["Disk-covering method" for long stringy trees]
- Maddison, D. R. 1991. The discovery and importance of multiple islands of most-parsimonious trees. *Systematic Zoology* **40:** 315-328. [Discusses heuristic search strategy involving ties, multiple starts]
- Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* **4:** 406-425. [**First mention of star-decomposition search for best trees, sort of**]
- Strimmer, K., and A. von Haeseler. 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. *Molecular Biology and Evolution* **13:** 964-969. [Assembles trees out of quartets]
- Swofford, D. L. and G. J. Olsen. 1990. Phylogeny reconstruction. Chapter 11, Pp. 411-501 in *Molecular Systematics*, ed. D. M. Hillis and C. Moritz. Sinauer Associates, Sunderland, Massachusetts. [Review that discusses strategies, names SPR and TBR rearrangement methods]
- Waterman, M. S. and T. F. Smith. 1978. On the similarity of dendrograms. *Journal of Theoretical Biology* **73:** 789-800. [Defines NNIs. Uses them to get a distance between trees.]

How it was done

This projection produced

- using the prosper style in LaTeX,
- using Latex to make a .dvi file,
- using dvips to turn this into a Postscript file,
- using ps2pdf to mill it into a PDF file, and
- displaying the slides in Adobe Acrobat Reader.

Result: nice slides using freeware.