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1. Introduction

scaleboot is an add-on package for R. It is for calculating approximately unbi-
ased (AU) p-values for a general problem from a set of multiscale bootstrap probabil-
ities (BPs). Scaling is equivalent to changing the sample size of a data in bootstrap
resampling. We compute BPs at several scales, from which a very accurate p-value
is calculated (Shimodaira 2002). This multiscale bootstrap method has been imple-
mented in CONSEL (Shimodaira and Hasegawa 2001) for phylogenetic inference and
as the R add-on package pvclust (Suzuki and Shimodaira 2006) for hierarchical
clustering. The point of the scaleboot package is to calculate an improved version
of the AU p-value that is justified even for hypotheses with nonsmooth boundaries
(Shimodaira 2008).

The basic usage of this package is illustrated in a simple example below. Then
real applications in hierarchical clustering and phylogenetic inference are shown
later.

For the use of scaleboot, Shimodaira (2008) may be referenced.
New update in 2018: Selective inference is now implemented. The selective infer-

ence version of the approximately unbiased p-value is denoted as SI in scaleboot

and pvclust. The original approximately unbiased p-value, which is denoted as
AU, is not designed for selective inference. The bootstrap probability (BP) is also
not designed for selective inference. The theory and example of selective inference
is described in Terada and Shimodaira (2017).

2. Install

scaleboot is easily installed from CRAN online. Windows users can install the
package by choosing “scaleboot” from the pull-down menu. Otherwise, run R on
your computer and type

> install.packages("scaleboot")

You can also download the package file from the URL below and install it manually.
http://stat.sys.i.kyoto-u.ac.jp/prog/scaleboot/

3. Simple Example

3.1. Simulation Data. We first generate a simulation data.

> simdata <- function(n,y,sd) {

+ m <- length(y)

+ x <- matrix(rnorm(m*n,0,sd),m,n)

+ t(x + (y - apply(x,1,mean)))

+ }

> X <- simdata(100,c(0,1,1,1,1,1,1,1,1,1),10)

> round(X[1:3,],3)

This document is a part of the scaleboot package (Version 0.4-0 or newer). The source file
is usesb.Rnw. I thank Paul A. Sheridan for his comments to improve the earlier version of the
manuscript.

1



2 HIDETOSHI SHIMODAIRA

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] -6.558 0.925 0.312 10.095 2.894 3.519 -4.529 7.589 -6.712 -2.012

[2,] -0.638 0.573 -0.915 8.625 2.958 0.040 -2.599 5.552 -7.598 24.689

[3,] -5.917 7.251 3.721 8.961 -6.419 -4.051 -5.913 2.753 -10.037 4.057

> y <- apply(X,2,mean)

> round(y,3)

[1] 0 1 1 1 1 1 1 1 1 1

The matrix X = (xij) above is of size n ×m with n = 100, m = 10. We consider
X as a data of sample size n, and rows xi = (xi1, . . . , xim), i = 1, . . . , n, are
observations of a random vector of m dimensions.

3.2. Null Hypothesis. Let µ be the unknown population mean of the row vectors.
An estimate of µ is the sample average of the rows defined as y = x̄ = 1

n

∑n
i=1 xi.

Let f(µ) be a 0/1-valued (or false/true valued) function of µ. The null hypothesis
we are going to test is represented as f(µ) = 1. For example, f(µ) = 1 if µ1 is the
largest among µ1, . . . , µm, and f(µ) = 0 otherwise. This f(µ) is implemented as
mc1(mu) below.

> mc1 <- function(x) all(x[1] >= x[-1])

> mc1(y)

[1] FALSE

Although f(y) = 0 gives a rough idea whether f(µ) = 1, we want to calculate a
real number ranging between 0 and 1 which indicates the possibility of f(µ) = 1.
This is what scaleboot calculates as p-values.

3.3. Bootstrap Probabilities. A naive way to calculate a p-value is by bootstrap
resampling. Let X∗ = (x∗ij) be a bootstrap sample of X; each row x∗i is obtained
by resampling with replacement from the rows x1, . . . , xn. Let n′ be the size of
the resampling so that X∗ is a matrix of size n′ ×m. The bootstrap replicate is

y∗ = x̄∗ = 1
n′

∑n′

i=1 x
∗
i . The following code generates an X∗ with n′ = n, and

calculates f(y∗). The resampling is made via a weight vector w; wi is the number
of times that xi is resampled in X∗.

> countw <- function(x,w,fn) {

+ y <- apply(w*x,2,sum)/sum(w)

+ fn(y)

+ }

> w <- as.vector(rmultinom(1,100,rep(1,100)))

> w

[1] 2 2 2 0 1 1 2 0 2 1 2 0 1 0 2 1 0 1 0 0 0 2 0 1 1 0 1 0 0 0 1 1 1 2 0 1 1

[38] 2 1 0 1 1 1 0 2 1 1 1 0 0 1 1 0 2 1 0 2 1 1 1 3 1 0 2 1 3 0 0 0 0 1 1 2 1

[75] 1 0 1 1 3 1 2 1 2 0 2 2 1 0 1 4 1 1 0 1 1 1 2 1 1 1

> countw(X,w,mc1)

[1] FALSE

Let B be the number of bootstrap samples we will generate, and y∗1 , . . . , y
∗
B

be the bootstrap replicates. Typically, B = 10, 000. The BP is computed as∑B
i=1 f(y∗i )/B, where the ordinary BP uses n′ = n. Since first introduced by

Felsenstein (1985), it has been widely used as a p-value, but the bias is in fact
rather large.

3.4. P -value Calculation. scaleboot calculates corrected p-values for improving
BPs. First load the package by

> library(scaleboot)
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Below, sa specifies the scales, and nb specifies B for each scale, so that 10, 000×
13 = 130, 000 bootstrap samples are generated internally. It takes a few minutes
on a pc.

> sa <- 9^seq(-1,1,length=13)

> nb <- 10000

> X.sb <- scaleboot(X,nb,sa,countw,mc1)

The main result (for k = 3) is shown by

> summary(X.sb) # k = 3 (default)

Raw Bootstrap Probability (scale=1) : 0.93 (0.10)

Hypothesis: null

Corrected P-values for Models (percent,Frequentist):

k.3 sk.3 beta0 beta1 aic weight

sing.3 37.68 (2.94) 42.97 (2.83) 1.64 (0.02) 0.68 (0.01) -12.35 100.00

poly.3 17.23 (1.26) 22.84 (1.47) 1.67 (0.03) 0.59 (0.02) 15.02

poly.2 6.34 (0.34) 9.70 (0.49) 1.92 (0.02) 0.39 (0.01) 177.96

poly.1 0.07 (0.00) 0.13 (0.01) 3.21 (0.02) 0.00 (0.00) 3534.85

Best Model: sing.3

Corrected P-values by the Best Model and by Akaike Weights Averaging:

k.3 sk.3 beta0 beta1

best 37.68 (2.94) 42.97 (2.83) 1.64 (0.02) 0.68 (0.01)

average 37.68 (2.94) 42.97 (2.83) 1.64 (0.02) 0.68 (0.01)

The selective inference p-values (SI) are denoted as sk.3, and the non-selective AU
p-values are denoted as k.3. We can also see additional results by specifying k,

> summary(X.sb, k=1:3) # k = 1, 2, 3
Raw Bootstrap Probability (scale=1) : 0.93 (0.10)

Hypothesis: null

Corrected P-values for Models (percent,Frequentist):

k.1 k.2 k.3 sk.1 sk.2 sk.3 beta0 beta1 aic weight

sing.3 1.04 (0.04) 16.89 (0.82) 37.68 (2.94) 2.08 (0.09) 22.50 (0.97) 42.97 (2.83) 1.64 (0.02) 0.68 (0.01) -12.35 100.00

poly.3 1.20 (0.05) 14.18 (0.93) 17.23 (1.26) 2.39 (0.10) 19.60 (1.15) 22.84 (1.47) 1.67 (0.03) 0.59 (0.02) 15.02

poly.2 1.03 (0.05) 6.34 (0.34) 6.34 (0.34) 2.06 (0.09) 9.70 (0.49) 9.70 (0.49) 1.92 (0.02) 0.39 (0.01) 177.96

poly.1 0.07 (0.00) 0.07 (0.00) 0.07 (0.00) 0.13 (0.01) 0.13 (0.01) 0.13 (0.01) 3.21 (0.02) 0.00 (0.00) 3534.85

Best Model: sing.3

Corrected P-values by the Best Model and by Akaike Weights Averaging:

k.1 k.2 k.3 sk.1 sk.2 sk.3 beta0 beta1

best 1.04 (0.04) 16.89 (0.82) 37.68 (2.94) 2.08 (0.09) 22.50 (0.97) 42.97 (2.83) 1.64 (0.02) 0.68 (0.01)

average 1.04 (0.04) 16.89 (0.82) 37.68 (2.94) 2.08 (0.09) 22.50 (0.97) 42.97 (2.83) 1.64 (0.02) 0.68 (0.01)

A class of AU p-values pk indexed by k = 1, 2, 3, are calculated, and they are
labelled as k.1, k.2, and k.3. The p-values are shown in percent, and the standard
errors are given in parentheses. We should look at the row of average (the bottom
line), and we can ignore the other rows. p1 ≈ 1% corresponds to the ordinary
BP, and p2 ≈ 18% corresponds to the AU p-value of Shimodaira (2002). What we
recommend to use here is p3 ≈ 40%; this is the AU p-value of Shimodaira (2008).
For this particular example, the common practice for calculating a p-value is to use
the multiple comparisons method. If it is applied to y, the p-value is p = 66%,
which is rather close to p3 in our example, whereas p1 is obviously too small.

Internally, as explained in the next section, several models are fitted to the
observed bootstrap probabilities. They are sorted in increasing order of AIC, and
the best model is sing.3. The row of sing.3 is duplicated in the row best, two
lines from the bottom. The Akaike weights ∝ exp(−AIC/2) are also computed for
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models and the p-values are averaged using the weights so that we get the row of
average, the bottom line. Typically, the two bottom lines are almost identical,
and average is regarded as a smoothed version of best for small changes in data.
I recommend to use average instead of best.

3.5. Internal Steps. We consider the following three steps (i)-(iii). Internally,
the scaleboot function (i) performs the multiscale bootstrap, and (ii) estimates
coefficients for candidate models. Then the summary method (iii) calculates the
corrected p-values. These steps are explained below.

The results of steps (i) and (ii) are shown here.

> X.sb

Multiscale Bootstrap Probabilities (percent):

1 2 3 4 5 6 7 8 9 10 11 12 13

0.00 0.01 0.05 0.12 0.29 0.68 0.93 1.57 2.21 2.77 3.40 3.94 4.69

Numbers of Bootstrap Replicates:

1 2 3 4 5 6 7 8 9 10 11 12 13

10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Scales (Sigma Squared):

1 2 3 4 5 6 7 8 9 10 11 12 13

0.1111 0.1603 0.2309 0.3333 0.4808 0.6944 1 1.449 2.083 3.03 4.348 6.25 9.091

Coefficients:

beta0 beta1 beta2

sing.3 1.1518 (0.1347) 1.1601 (0.1401) 0.8332 (0.1221)

poly.3 1.6337 (0.0284) 0.6569 (0.0210) -0.0318 (0.0024)

poly.2 1.9212 (0.0219) 0.3943 (0.0069)

poly.1 3.2056 (0.0182)

Model Fitting:

rss df pfit aic

sing.3 7.65 10 0.6629 -12.35

poly.3 35.02 10 0.0001 15.02

poly.2 199.96 11 0.0000 177.96

poly.1 3558.85 12 0.0000 3534.85

Best Model: sing.3

>

The results of (i) are the BPs for the 13 scales shown at first. Let ασ2 denote
the BP at scale σ2. Each BP is calculated from 10,000 bootstrap samples of size
n′ as the frequency of observing f(y∗) = 1. In scaleboot, n′ is round(n/sa[i]),
for i = 1, . . . , 13. Then, the scale is recalculated as σ2 = n/n′ for taking account of
the discreteness.

Step (ii) is performed by the sbfit function called internally from the scaleboot
function for fitting parametric models to observed ασ2 ’s. By default, four models
are considered as candidates; poly.1, poly.2, poly.3, and sing.3. Each of these
models is denoted as ψ(σ2|β). Let zσ2 = Φ−1(1 − ασ2) be the bootstrap z-value
at scale σ2, where Φ−1(p)=qnorm(p). We work on σzσ2(y), which may be called
a normalized bootstrap z-value. Considering σzσ2 as a function of σ2, the coeffi-

cient vector β is estimated by fitting σzσ2 = ψ(σ2|β). Let β̂ denote the estimated
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Figure 1. Model Fitting

value; the details of fitting β̂ are explained later. We may choose the model which

minimizes AIC value. The fitted curves are shown (Fig. 1) by plotting ψ(σ2|β̂) as

> plot(X.sb,legend="topleft")

The same plot but in other variables can be shown (Fig. 2) by, for example,

> plot(X.sb,xval="sigma",log="x",yval="pvalue",legend="topleft")

poly.k model is specified as a polynomial of σ2; ψ(σ2|β) =
∑k−1
j=0 βjσ

2j for

k ≥ 1. sing.k model is specified as ψ(σ2|β) = β0 +
∑k−2
j=1 βjσ

2j/(1 + βk−1(σ − 1))
for k ≥ 3, where 0 ≤ βk−1 ≤ 1. The number k for each model denotes the number
of coefficients in β.

The details of model fitting are as follows. Let Bi and Ci be the number of
replicates and the observed number of times that f(y∗) = 1, respectively, for the
bootstrap resampling of scale σ2

i , i = 1, . . . , S. Since each Ci is binomially dis-
tributed, the log-likelihood is

`(β) =

S∑
i=1

{
Ci log Φ(−ψ(σ2

i |β)/σi) + (Bi − Ci) log Φ(ψ(σ2
i |β)/σi)

}
,

where Φ(q)=pnorm(q). The estimate β̂ is obtained by maximizing `(β) numerically.
The goodness of fit is measured by the difference of AIC values between the specified
model and an unconstrained binomial model;

AIC = (−2`(β̂) + 2k)− (−2ˆ̀+ 2S),

where ˆ̀=
∑S
i=1(Ci log(Ci/Bi) + (Bi − Ci) log(1− Ci/Bi)).
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Figure 2. Model Fitting (x = log σ, y = ασ2)

Step (iii) is performed by the the summary method as already mentioned. The
first line shows the “raw” BP α1 (the BP obtained from the ordinary bootstrap
resampling). The main results are the corrected p-values, which follow next. For
each model, we calculate qk, k = 1, 2, 3, by

qk =

k−1∑
j=0

(−1− σ2
0)j

j!

∂jψ(σ2|β̂)

∂(σ2)j

∣∣∣
σ2
0

.

Then the corrected p-values are calculated by pk = 1 − Φ(qk). By default σ2
0 = 1.

The calculation of qk is interpreted as extrapolation of σzσ2 to σ2 = −1 by using the
first k terms of the Taylor series. According to the theory of Shimodaira (2008),
the unbiased p-value is, if it exists, obtained by taking the limit k → ∞. The
extrapolated curves are shown (Fig. 3) by

> plot(summary(X.sb),legend="topleft")

4. Hierarchical Clustering

4.1. Pvclust Package. The scaleboot package includes an interface for the pv-

clust package (Suzuki and Shimodaira 2006). We use pvclust to calculate mul-
tiscale BPs for clusters by bootstrapping hierarchical clustering, from which we
calculate an improved version of AU p-values using scaleboot. See help(lung73)

for further details of the following example.

4.2. Using Pvclust. This example uses the lung dataset (Garber et al. 2001)
included in pvclust. It is a DNA microarray data of 73 lung tissues (arrays)
with 916 observations of genes. To draw dendrograms in terms of the arrays, we
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resample genes in our analysis; this may be interpreted as assessing the uncertainty
due to the variability of genes. The function pvclust first obtains a dendrogram by
a hierarchical clustering method, and then calculates the multiscale BPs for each
cluster of the dendrogram.

> library(pvclust)

> data(lung)

> sa <- 9^seq(-1,1,length=13)

> nb <- 10000

> lung73.pvclust <- pvclust(lung,r=1/sa,nboot=nb)

The above code may take a day, so it would be a good idea to run with nb=1000
so that it would run 10 times faster. However, nb=1000 should be used just for
checking the program, and nb=10,000 (at least) is recommended for publishing the
results.

4.3. Model Fitting. We next apply the sbfit function of scaleboot to the mul-
tiscale BPs. For each cluster of the dendrogram, parametric models are fitted to
the BPs.

> library(scaleboot)

> lung73.sb <- sbfit(lung73.pvclust)

4.4. Lung73 Dataset. The results of the previous two sections (lung73.pvclust
and lung73.sb) are in fact stored in the lung73 dataset of scaleboot. For users
who want to try the examples, just type as follows.

> library(scaleboot)

> data(lung73)
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Figure 4. Dendrogram of lung73 dataset (k = 3)

We have used a cluster computer of 40 cpus for parallel computing using the
snow package. The following code may run in under an hour.

> library(snow)

> cl <- makeCluster(40)

> library(pvclust)

> data(lung)

> sa <- 9^seq(-1,1,length=13)

> nb <- 10000

> lung73.pvclust <- parPvclust(cl,lung,r=1/sa,nboot=nb)

> library(scaleboot)

> lung73.sb <- sbfit(lung73.pvclust,cluster=cl)

4.5. P -value Calculation. To calculate AU p-values (p3) from lung73.sb and
write them back to lung73.pvclust, we do

> lung73.k3 <- sbpvclust(lung73.pvclust,lung73.sb)

To see the results, we simply plot the dendrogram (Fig. 4) by

> library(pvclust)

> plot(lung73.k3, cex=0.5, cex.pv=0.7)

> pvrect(lung73.k3, pv="si") # find clusters with p>0.95. Now use SI instead of AU.

There three types of p-values are printed at each edge of the cluster. SI is the
selective inference version of approximately unbised p-value, which is newly intro-
duced in Terada and Shimodaira (2017). AU is the non-selective inference version
of approximately unbiased p-value, which has been used since Shimodaira (2002).
BP is the original bootstrap probability. SI, AU, BP are denoted as sk.3, k.3,
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Figure 5. Model fitting for node 67

k.1, respectively, in tables generated by scaleboot for k = 3. When you know the
cluster before looking at the data (such as cluster id=31, the left most cluster in
Fig. 4; it consists of normal cell and fetal cell, so no lung cancer at all), you may use
AU. However, you should use SI for most of the clusters when they are identified
by looking at the tree.

To calculate p2 instead of p3, specify k=2,

> lung73.k2 <- sbpvclust(lung73.pvclust,lung73.sb, k=2)

4.6. Diagnostics of Fitting. The fitted curves are drawn by the plot method.
For node 67, say, a plot with legend is obtained (Fig. 5) by

> plot(lung73.sb[[67]],legend="topleft")

All the calculated p-values for node 67 are given by

> summary(lung73.sb[[67]])

Raw Bootstrap Probability (scale=1) : 3.78 (0.19)

Hypothesis: null

Corrected P-values for Models (percent,Frequentist):

k.3 sk.3 beta0 beta1 aic weight

sing.3 95.00 (0.18) 97.45 (0.09) 0.53 (0.01) 1.29 (0.01) 34.35 100.00

poly.3 92.75 (0.28) 97.09 (0.14) 0.33 (0.00) 1.43 (0.01) 390.53

poly.2 83.64 (0.32) 92.78 (0.19) 0.31 (0.00) 1.29 (0.01) 1319.11

poly.1 18.53 (0.10) 37.05 (0.21) 0.90 (0.00) 0.00 (0.00) 53012.00
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Figure 6. Extrapolation for node 67

Best Model: sing.3

Corrected P-values by the Best Model and by Akaike Weights Averaging:

k.3 sk.3 beta0 beta1

best 95.00 (0.18) 97.45 (0.09) 0.53 (0.01) 1.29 (0.01)

average 95.00 (0.18) 97.45 (0.09) 0.53 (0.01) 1.29 (0.01)

The extrapolation using the best models (averaged by the Akaike weights) is shown
(Fig. 6) by

> plot(summary(lung73.sb[[67]]),legend="topleft")

For a set of nodes, p-values are given by

> summary(lung73.sb[c(62,67,69,71)])

Corrected P-values by Akaike Weights Averaging (percent,Frequentist):

raw k.3 sk.3 beta0 beta1 hypothesis model weight

62 95.81 (0.20) 98.78 (0.07) 96.96 (0.16) -2.00 (0.02) 0.25 (0.01) alternative poly.2 47.70

67 3.78 (0.19) 95.00 (0.18) 97.45 (0.09) 0.53 (0.01) 1.29 (0.01) null sing.3 100.00

69 30.51 (0.46) 75.04 (0.21) 9.00 (0.34) -0.08 (0.00) 0.60 (0.00) alternative poly.2 57.35

71 25.63 (0.44) 86.02 (0.27) 26.18 (0.47) -0.18 (0.00) 0.83 (0.01) alternative poly.3 100.00

Also plots are shown (Fig. 7) by

> plot(lung73.sb[c(62,67,69,71)])

5. Phylogenetic Inference

5.1. CONSEL Software. scaleboot has a front end for phylogenetic inference,
and it may eventually replace the CONSEL software (Shimodaira and Hasegawa 2001)
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Figure 7. Model fitting for a set of nodes

for testing phylogenetic trees. Currently, scaleboot does not have a method for
converting files obtained from other commonly used phylogenetic software packages,
and so we must use CONSEL for this purpose before applying scaleboot to calculate
an improved version of AU p-values for trees and edges. See help(mam15) for further
details of the following example.

5.2. Mammal Dataset. We work on an example of phylogenetic analysis of six
mammal species: Homo sapiens (human), Phoca vitulina (harbor seal), Bos taurus
(cow), Oryctolagus cuniculus (rabbit), Mus musculus (mouse), Didelphis virginiana
(opossum). The dataset was originally used in Shimodaira and Hasegawa (1999).

For Unix users, download mam15-files.tgz, and for Windows users download
mam15-files.zip. The details of dataset files are as follows. mam15.aa: amino
acid sequences (n = 3414) of mtDNA for the six mammals. mam15.ass: association
vectors for edges and trees. mam15.lnf: site-wise log-likelihood values (output from
PAML). mam15.log: detailed information for the associations. mam15.mt: site-wise
log-likelihood values (output from seqmt). mam15.tpl: 15 tree topologies.

5.3. Likelihood Calculation of Trees. The main body of the dataset is the
amino acid sequences (mam15.aa). We consider m = 15 tree topologies of the six
mammals (mam15.tpl);

((Homsa,(Phovi,Bosta)),Orycu,(Musmu,Didvi)); t1

(Homsa,Orycu,((Phovi,Bosta),(Musmu,Didvi))); t2

(Homsa,((Phovi,Bosta),Orycu),(Musmu,Didvi)); t3

(Homsa,(Orycu,Musmu),((Phovi,Bosta),Didvi)); t4

((Homsa,(Phovi,Bosta)),(Orycu,Musmu),Didvi); t5
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(Homsa,((Phovi,Bosta),(Orycu,Musmu)),Didvi); t6

(Homsa,(((Phovi,Bosta),Orycu),Musmu),Didvi); t7

(((Homsa,(Phovi,Bosta)),Musmu),Orycu,Didvi); t8

(((Homsa,Musmu),(Phovi,Bosta)),Orycu,Didvi); t9

(Homsa,Orycu,(((Phovi,Bosta),Musmu),Didvi)); t10

(Homsa,(((Phovi,Bosta),Musmu),Orycu),Didvi); t11

((Homsa,((Phovi,Bosta),Musmu)),Orycu,Didvi); t12

(Homsa,Orycu,(((Phovi,Bosta),Didvi),Musmu)); t13

((Homsa,Musmu),Orycu,((Phovi,Bosta),Didvi)); t14

((Homsa,Musmu),((Phovi,Bosta),Orycu),Didvi); t15

The maximum likelihood estimates for these trees are calculated by PAML (Yang
1997). Let xij be the site-wise log-likelihood for sites i = 1, . . . , n, and trees j =
1, . . . ,m. The log-likelihood of tree-j is

∑n
i=1 xij . A large n justifies the central

limit theorem for y = x̄, and allows us to resample xij directly without recalculation
of the maximum likelihood estimates. The matrix X = (xij) is produced by PAML
and stored in mam15.lnf. It is converted by CONSEL to a simpler format and
stored in mam15.mt. The command is

seqmt --paml mam15.lnf

5.4. P -value Calculation for Trees. The AU p-values for trees are calculated
simply by

> library(scaleboot)

> mam15.mt <- read.mt("mam15.mt")

> mam15.trees <- relltest(mam15.mt)

> summary(mam15.trees)

The relltest function above may take a half hour. The next section can be skipped
if only tree selection is of interest.

5.5. P -value Calculation for Clusters. We can also calculate AU p-values for
clusters (edges) of trees. We have to know, for each cluster, in which of the 15 trees
it is included. The file mam15.ass has this information, which was generated using
CONSEL by the command

treeass --outgroup 6 mam15.tpl > mam15.log

It also produces mam15.log for human readable information. A part of mam15.log
is as follows.

# leaves: 6

6

1 Homsa

2 Phovi

3 Bosta

4 Orycu

5 Musmu

6 Didvi

# base edges: 10

10 6

123456

1 +++--- ;

2 ++++-- ;

3 +--+-- ;

4 -+++-- ;

5 ---++- ;
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6 +--++- ;

7 -++++- ;

8 +++-+- ;

9 +---+- ;

10 -++-+- ;

The clusters (edges) defined above are named e1,...,e10. For example, e1 = +++--

= (Homsa, Phovi, Bosta).
The AU p-values for clusters as well as trees are calculated simply by

> library(scaleboot)

> mam15.mt <- read.mt("mam15.mt")

> mam15.ass <- read.ass("mam15.ass")

> mam15.relltest <- relltest(mam15.mt,ass=mam15.ass)

> summary(mam15.relltest)

5.6. Mam15 Dataset. The results of the previous sections ( mam15.mt, mam15.ass,
and mam15.relltest) are in fact stored in mam15 dataset of scaleboot. For users
who want to try the examples, just type as follows.

> library(scaleboot)

> data(mam15)

The results for trees are extracted by

> mam15.trees <- mam15.relltest[1:15]

We have used a cluster computer of 40 cpus for parallel computing using the
snow package. The following code may take only 10 minutes, although we have
used the number of resamples 10 times larger than the default value.

> library(snow)

> cl <- makeCluster(40)

> library(scaleboot)

> mam15.mt <- read.mt("mam15.mt")

> mam15.ass <- read.ass("mam15.ass")

> mam15.relltest <- relltest(mam15.mt,nb=100000,ass=mam15.ass)

5.7. Interpreting the Results. First we sort the results in increasing order of
log-likelihood difference,

> stat <- attr(mam15.trees,"stat")

> o <- order(stat)

> mam15.trees <- mam15.trees[o]

> summary(mam15.trees, k=1:3)
Corrected P-values by Akaike Weights Averaging (percent,Frequentist):

raw k.1 k.2 k.3 sk.1 sk.2 sk.3 beta0 beta1 hypothesis model weight

t1 57.49 (0.16) 56.10 (0.04) 74.55 (0.05) 74.55 (0.06) 12.20 (0.08) 36.37 (0.09) 36.37 (0.09) -0.41 (0.00) 0.25 (0.00) alternative poly.2 57.26

t3 31.88 (0.15) 30.37 (0.05) 46.39 (0.09) 45.21 (0.13) 60.73 (0.10) 79.46 (0.08) 78.61 (0.10) 0.30 (0.00) 0.21 (0.00) null poly.3 100.00

t2 3.67 (0.06) 3.65 (0.03) 13.10 (0.19) 16.60 (0.46) 7.31 (0.05) 20.75 (0.26) 24.66 (0.53) 1.46 (0.01) 0.34 (0.00) null sing.3 100.00

t5 1.32 (0.04) 1.35 (0.02) 7.83 (0.25) 10.13 (0.52) 2.70 (0.03) 11.97 (0.33) 14.62 (0.63) 1.81 (0.01) 0.40 (0.01) null sing.3 99.99

t6 3.21 (0.06) 3.16 (0.02) 12.44 (0.19) 13.60 (0.27) 6.32 (0.05) 19.51 (0.25) 20.82 (0.34) 1.51 (0.01) 0.35 (0.00) null poly.3 78.42

t7 0.54 (0.02) 0.52 (0.01) 3.55 (0.20) 4.52 (0.39) 1.04 (0.02) 5.48 (0.29) 6.66 (0.50) 2.18 (0.02) 0.38 (0.01) null sing.3 90.92

t4 1.54 (0.04) 1.49 (0.02) 10.28 (0.27) 14.59 (0.66) 2.97 (0.03) 15.23 (0.35) 19.98 (0.75) 1.72 (0.01) 0.45 (0.01) null sing.3 99.07

t15 0.08 (0.01) 0.07 (0.00) 0.96 (0.10) 1.17 (0.15) 0.15 (0.01) 1.45 (0.14) 1.71 (0.20) 2.76 (0.03) 0.42 (0.01) null poly.3 96.14

t8 0.00 (0.00) 0.00 (0.00) 0.05 (0.03) 0.10 (0.09) 0.00 (0.00) 0.08 (0.04) 0.14 (0.11) 3.73 (0.11) 0.42 (0.05) null sing.3 60.23

t14 0.24 (0.02) 0.22 (0.01) 2.87 (0.27) 5.18 (0.83) 0.45 (0.02) 4.21 (0.37) 6.91 (0.97) 2.37 (0.03) 0.47 (0.02) null sing.3 97.92

t13 0.02 (0.00) 0.01 (0.00) 0.38 (0.10) 0.81 (0.38) 0.02 (0.00) 0.55 (0.14) 1.04 (0.44) 3.19 (0.06) 0.49 (0.03) null poly.3 72.69

t9 0.00 (0.00) 0.00 (0.00) 0.09 (0.06) 0.32 (0.32) 0.00 (0.00) 0.13 (0.08) 0.39 (0.37) 3.67 (0.11) 0.52 (0.06) null sing.3 56.43

t11 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.05 (0.06) 0.00 (0.00) 0.03 (0.02) 0.07 (0.08) 4.05 (0.13) 0.49 (0.05) null poly.3 77.19

t10 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 5.51 (0.33) 0.37 (0.11) null poly.2 48.24

t12 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 5.45 (0.38) 0.45 (0.13) null poly.2 38.55

Next we look at the p-values. We confirm that p1 (the second column, indicated
as k.1) is almost the same as the raw BP (the first column); this should be so
if the model fitting is good. Only two trees, i.e., t1 and t3, have p1 > 0.05. It
is known that the bias of p1 is large so that often leads to false positives for tree
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selection. p2 improves upon p1 by correcting the bias. Six trees, i.e., t1, t3, t2,
t5, t6, and t4, have p2 > 0.05. p3 improves upon p2 even more, although the trees
of p3 > 0.05 are the same six trees in this example. In general, the accuracy of
pk (AU p-values, indicated as k.k in the table) increases for larger k, but it tends
to have larger variation, so typically k = 2 or k = 3 would be used. Terada and
Shimodaira (2017) intoduced selective inference p-value, denoted as SI, or sk.k in
the table. In the phylogenetic tree selection, this may only apply to the tree selected
by the algorithm. In our case, the maximum likelhiood tree (t1), we can look at
p = 0.36 (sk.2). By taking this tree as the alternative hypothesis, we can interpret
1− p = 0.64 as the selective p-value. So, we can reject the null (t1 is not true) and
claim that t1 is the true tree when p > 0.95 at α = 0.05. Unfortunately, p = 0.36
is too small and we cannot say anything in this table.

Next we look at p-values for clusters instead of trees.

> mam15.edges <- mam15.relltest[16:25] # 10 edges

> summary(mam15.edges,k=1:3)
Corrected P-values by Akaike Weights Averaging (percent,Frequentist):

raw k.1 k.2 k.3 sk.1 sk.2 sk.3 beta0 beta1 hypothesis model weight

e1 58.82 (0.16) 58.07 (0.05) 71.77 (0.07) 72.09 (0.11) 16.14 (0.10) 33.76 (0.09) 34.08 (0.12) -0.39 (0.00) 0.19 (0.00) alternative poly.3 100.00

e2 93.04 (0.08) 93.06 (0.04) 95.59 (0.07) 95.65 (0.09) 86.12 (0.07) 90.31 (0.13) 90.41 (0.16) -1.59 (0.00) 0.11 (0.00) alternative poly.3 60.86

e3 3.68 (0.06) 3.63 (0.03) 12.62 (0.17) 17.96 (0.53) 7.26 (0.05) 20.11 (0.23) 26.02 (0.59) 1.47 (0.00) 0.33 (0.00) null sing.3 100.00

e4 32.51 (0.15) 31.76 (0.05) 43.39 (0.09) 43.23 (0.12) 63.51 (0.10) 77.31 (0.08) 77.20 (0.10) 0.32 (0.00) 0.15 (0.00) null poly.3 98.52

e5 6.07 (0.08) 5.91 (0.03) 7.38 (0.10) 7.12 (0.12) 11.81 (0.06) 14.12 (0.16) 13.77 (0.19) 1.51 (0.00) 0.06 (0.00) null poly.3 100.00

e6 1.80 (0.04) 1.74 (0.02) 7.03 (0.18) 11.74 (0.68) 3.48 (0.04) 11.25 (0.25) 16.70 (0.78) 1.79 (0.01) 0.32 (0.01) null sing.3 100.00

e7 3.75 (0.06) 3.73 (0.03) 9.17 (0.17) 10.62 (0.34) 7.45 (0.05) 15.56 (0.24) 17.31 (0.44) 1.56 (0.01) 0.23 (0.00) null sing.3 99.89

e8 0.00 (0.00) 0.00 (0.00) 0.05 (0.02) 0.12 (0.10) 0.01 (0.00) 0.08 (0.03) 0.16 (0.12) 3.65 (0.08) 0.34 (0.04) null sing.3 60.70

e9 0.32 (0.02) 0.30 (0.01) 1.46 (0.12) 2.28 (0.34) 0.60 (0.02) 2.39 (0.17) 3.41 (0.44) 2.47 (0.02) 0.28 (0.01) null poly.3 50.77

e10 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 4.20 (0.12) 0.40 (0.04) null poly.3 83.98

When we apply hypothesis testing to all the 10 clusters, we may use AU p-values.
Let p be k.2. Then e8, e9 and e10 have p < 0.05, and e5, e6, e7 also have p < 0.10.
They may be rejected at either α = 0.05 or 0.10. However, people often want to
look at only the clusters appearing in the top tree. In this table, only e1 and e2
are included in t1. We should use SI p-values for testing each of these two clusters
by taking it as the alternative hypothesis. Let p be sk.2. Then e2 has p > 0.90,
indicating that the null hypothesis (e2 is not true) is rejected as 1 − p < 0.10 at
α = 0.10.

Finally we examine model fitting. According to the AIC values, the fitting is
good overall except for the top two trees; however note that the AIC values should
be about 10 times smaller if the default value of nb=10,000 was used. The fitting
curves for the top four trees are shown (Fig. 8) by

> plot(mam15.trees[1:4])

According to the plots, the fitting is rather good even for the top two trees.
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